FACULTAD DE CIENCIAS EMPRESARIALES

Carrera de International Business

Trabajo de investigación para optar el Grado Académico de Bachiller en International Business.

RENATO JESUS ORMEÑO NORIEGA

Lima - Perú 2019
DEDICATORIA

Este trabajo se lo dedico a mis padres, familiares y amigos por el esfuerzo, aliento, paciencia y sacrificio brindado todos estos años como apoyo a la culminación de mi carrera universitaria.

También a mis profesores y personas que conocí durante este largo periodo quienes fueron los que alimentaron mis conocimientos; me compartieron sus vivencias y me dejaron vivir mis propias experiencias para poder desarrollarme de manera crítica como persona y profesional.
AGRADECIMIENTO

Especial agradecimiento a nuestro centro de estudios, la Universidad San Ignacio de Loyola por habernos brindado las herramientas y material de estudios necesarios para poder llevar a cabo este trabajo de investigación con el fin de optar el título de Bachiller de mi carrera.

Esta investigación se hizo realidad gracias a la supervisión y ayuda del docente de la universidad, el Doctor Bazán Navarro, Ciro Eduardo, quien me brindó las pautas necesarias para poder desarrollar este proyecto con éxito.
Indice

Introducción .. 1
Problema de investigación ... 2
Planteamiento del Problema ... 2
Formulación del Problema .. 3
Justificación de la Investigación .. 3
Marco Referencial ... 4
Antecedentes ... 4
Marco Teórico .. 8
Objetivos e Hipótesis .. 11
Método ... 13
 Tipo y Diseño de Investigación .. 13
 Participantes ... 14
 Instrumentos .. 15
 Procedimiento .. 15
 Análisis de datos ... 16
Resultados ... 17
 Presentación de Resultados .. 17
Discusión ... 25
 Conclusiones .. 26
 Recomendaciones .. 27
Referencias ... 28
Anexos ... 32
 Estimación del modelo ... 48
 Prueba de Heterocedasticidad .. 49
Indice de Tablas

Tabla 1 Test de Regresión Espuria ... 18
Tabla 2 Estimación del modelo ... 20
Tabla 3 Prueba t ... 21
Tabla 4 Test de Heterocedasticidad - Breusch-Pagan-Godfrey 22
Tabla 5 Prueba de Inflación de Varianza (VIF) .. 23

Indice de Gráficos

Gráfico 1 Prueba de estabilidad ... 24
Resumen

El estudio aborda algunos factores que influyen el desarrollo de las exportaciones de espárragos en el Perú, analizando la evolución de este a lo largo de 11 años de datos recopilada de su precio, su volumen, producción nacional y el tipo de cambio, además de identificar si los mencionados factores repercuten en el volumen de exportación. Después de analizar los resultados obtenidos mediante la aplicación del modelo de regresión lineal múltiple con mínimos cuadrados sobre los factores se determinó que existe en estos una relación con el volumen de exportación; que la variación de cada uno de los factores tiene una repercusión negativa o positiva sobre el volumen de exportación de espárragos como el incremento de la producción de espárrago genera un incremento en la exportación de espárrago de 0.02348 toneladas, mientras que el tipo de cambio con un incremento de una unidad genera una disminución de 2.9483 toneladas.

Palabras claves: Volumen de espárrago, regresión lineal múltiple, factores de exportación
Abstract

The study addresses some factors that influence the development of asparagus exports in Peru, analyzing the evolution of this over 11 years of data collected from its price, its volume, national production and the exchange rate, in addition to identifying if the aforementioned factors affect the export volume. After analyzing the results obtained by applying the multiple linear regression model with least squares on the factors, it was determined that there is a relationship with the export volume; that the variation of each of the factors has a negative or positive impact on the export volume of asparagus as the increase in the production of asparagus generates an increase in the export of asparagus of 0.02348 tons, meanwhile the exchange rate with an increase of a unit generates a decrease of 2.9483 tons.

Keywords: Asparagus volume, multiple linear regression, export factors
Introducción

Esta investigación busca analizar la importancia de la exportación del espárrago para la economía nacional, identificando la influencia de los factores económicos (variables independientes) como la Producción nacional (PNB), el tipo de cambio (TC), y otros factores como la exportación de otros países y el precio de exportación frente al volumen exportador de este vegetal, que permitan descubrir el grado relación que tienen entre sí y su beneficio o perjuicio para la exportación nacional (variable dependiente).

La motivación de abordar el tema del volumen de exportación del espárrago, y la influencia que tuvieron en su volumen las variaciones de los indicadores económicos nacionales, y otros factores se debe a que el espárrago es uno de los 10 principales productos agrícolas exportados al mundo por Perú y a que es una de las principales actividades agrícolas exportadoras en nuestro país. Es así que en el estudio “Tomando impulso en la agricultura peruana: oportunidades para aumentar la productividad y mejorar la competitividad del sector” (Morris, M., Díaz, L., Sebastian, A., Vega, G., Miranda, J., Valdés, A. & Frewer, F., 2017) se muestra la importancia de los cultivos de este vegetal para el PBI, la balanza comercial y las hectáreas dedicadas a la siembra de este producto.

Por todo ello, esta industria es significativa para el crecimiento nacional, por lo que no podemos dejar de indagar en los factores que afectan positiva o negativamente a su volumen de exportación.

En este trabajo se realizó un análisis de series de tiempo de las variables objeto de estudio, estimando los parámetros del modelo mediante Mínimos Cuadrados Ordinarios (MCO), y determinando el nivel de relación de las variables independientes con la dependiente, para lo cual se utilizó una muestra de todas las exportaciones de este agroproducto realizadas durante el periodo 2007 – 2018.
Problema de investigación

Planteamiento del Problema

En el Perú el espárrago es uno de los 10 principales productos de exportación; para el año 2018 el mundo importó alrededor de 431,508 toneladas proveniente de Perú siendo los países de Estados Unidos, Países Bajos, Alemania, Reino Unido, Rusia, Francia, España y Canadá los principales consumidores que representan más del 50% del consumo global (Trade Map, 2019). Perú participa como país proveedor de más de 89 países en el mundo que han sido nuestros mercados de exportación de este vegetal.

El Banco Mundial, en una de sus publicaciones mencionó la preocupación que deben tener los hacedores de políticas por 5 razones:

- **Primero,** la agricultura forma una parte importante de la economía, por lo que, si se desacelera el crecimiento agrícola, sufrirá el crecimiento en general.
- **Segundo,** un sector agrícola expansivo diversifica la economía peruana y reduce la dependencia en la industria extractiva, de modo que, si el sector agrícola se contrae en relación con los demás sectores, el crecimiento económico puede ser más volátil.
- **Tercero,** un crecimiento liderado por la agricultura es bueno para la población pobre, en el sentido de que, si el crecimiento agrícola se desacelera, se perderán importantes medios de reducción de pobreza.
- **Cuarto,** el Perú depende de importaciones de alimentos para compensar deficiencias de producción, por lo que, si la producción agrícola no mantiene el ritmo del crecimiento poblacional, la seguridad alimentaria nacional podría verse amenazada.
- **Quinto,** las prácticas agrícolas inteligentes en términos climáticos pueden jugar un rol muy importante en la reducción de emisiones de gases de efecto invernadero y secuestro de carbono, de modo que, si las prácticas agrícolas futuras no son inteligentes en términos climáticos, se perderá una oportunidad importante de ayudar a la mitigación del cambio climático, (Morris et al., 2017, p. xi).

Es decir, que la agricultura debe ser impulsada para mantener nuestra industria agraria competitiva y mantener nuestros recursos naturales como uno de los principales ingresos de la economía, y también ayudar a reducir los efectos del cambio climático desarrollando más este sector económico.
Sabiendo la participación que tienen el grupo de países antes mencionado en nuestra oferta de espárrago, se debe analizar y considerar la importancia que tiene el volumen de exportación del espárrago en nuestra economía y en nuestra oferta exportable. Existen factores incontrolables por los exportadores que pueden generar una disminución en el volumen de exportación o un efecto de incremento en este, y debemos encontrar qué factores y en qué grado son los que más afectan al volumen de nuestra exportación para poder generar medidas de respuesta o mejora de procesos.

Formulación del Problema

¿Cuál es la influencia de los factores determinantes de la exportación de espárragos en el Perú (2007 – 2018)?

Justificación de la Investigación

La presente investigación es una evidencia de los factores económicos y no económicos que influyen en el volumen de exportación total de espárrago y la influencia a través de los cambios en estos factores; debido a que este producto representa a uno de los 10 principales productos exportados del Perú en el sector agrícola y a que existen varias empresas agroexportadores dedicadas a su producción y exportación; por este motivo se analizaron 4 variables importantes para el volumen de exportación de espárrago fresco como la producción de otras naciones de América latina y el caribe, el tipo de cambio, el precio de exportación y la producción nacional (PNB) de Perú de este producto; siendo el contraste entre estas variables quienes nos mostraron en los resultados su capacidad de afectar el volumen de exportación del espárrago fresco; es aquí donde se empieza a discernir la necesidad de desarrollar más políticas de promoción del comercio exterior, promoción de la agricultura con cultivos exportables y de mejorar la infraestructura nacional para mitigar los cambios bruscos que se pueden generar con el cambio de los índices de las variables mencionadas, a través del apoyo del estado como lo comprueba en su investigación Hurtado Ayala, A. & Escandon Barbosa, D. (2016), donde concluyen que existen factores claves para el incremento de las exportaciones de un país como la postura emprendedora asociada con las características propias del empresario, características internas, características externas y recursos gubernamentales estos permitiendo la mejora de los niveles de desempeño exportador. Por otra parte teniendo en consideración que los servicios brindados por los operadores del comercio exterior a la industria son importantes
estos deben ser supervisados por el gobierno para brindar un servicio adecuado, no solo con el fin de beneficiar a este producto sino todas las industrias relacionadas a la actividad de exportación. Adicionalmente esto permite diversificar las exportaciones e incrementar los ingresos económicos del país a través de estas actividades sin depender de una sola industria, beneficiando principalmente a las agroexportadoras de espárrago; también a la industria agraria y la exportación nacional generando un incremento en el índice de PBI por su mayor participación en la generación de ingresos al País.

Marco Referencial

Antecedentes

A fin de desarrollar la presente investigación fue necesario realizar un análisis a fondo de otros estudios e investigaciones ya publicados para obtener un preámbulo de información suficiente, y enfocar la investigación en base a teorías y metodologías científicas halladas sobre el producto, productos similares y objetivos similares.

Morris et al. (2017), en su publicación “Tomando impulso en la agricultura peruana: Oportunidad para aumentar la productividad y mejorar la competitividad del sector”, resumen el conocimiento sobre la agricultura peruana y su transformación constante junto con el sistema alimentario: evaluando su desempeño y su competitividad en los últimos años. Asimismo, estos autores buscan resaltar las oportunidades que se tienen para mejorar el futuro de este sector económico como la importancia del espárrago peruano y como este ha tomado protagonismo en las exportaciones nacionales ya que desde hace más de una década este ha venido incrementando su exportación y el Perú es uno de los principales proveedores para el mundo de esta vegetal. De la misma forma, estos autores señalaron que Perú incrementó sus hectáreas cosechadas de espárrago en un 68.29% desde 1995 hasta el 2015, registrando en el 2015 un total de 33,870 (ha).

En la investigación de Böttger, X. (2016) titulada “Factores que afectan la exportación de espárrago desde Perú a Estados Unidos”, se analizó el impacto en el cambio de las exportaciones de Perú a Estados Unidos después de firmado el TLC entre EE.UU-Perú e identificar qué variables influyen sobre las exportaciones del espárrago. El modelo empleado para determinar el nivel de afectación fue el modelo de Mínimos Cuadrados Ordinarios y la regresión lineal, a través de estos se determina mediante su aplicación y se obtuvo que las variables de producción y precio afectan la exportación de espárragos a Estados Unidos, siendo solo las variables Arancel de Perú, ingreso nacional bruto en
EE.UU. y la producción de espárrago en México significativas, por lo que se eliminó la variable producción de espárrago de Chile.

Dentro de los factores determinantes de la exportación hay estudios como el de Ambrosio, R., Filho, E.T., & Batista R., (2017), titulado “An analysis of the relationship between the volumes of exports and brazilian imports and GDP variables, exchange rates and inflation 2004 to 2014”, cuyo objetivo es entender la relación entre las variables PBI(GDP), tipo de cambio, y índice de SELIC mediante el análisis con el modelo de Máximos cuadrados ordinarios (MCO) y regresión lineal. En este trabajo se demuestra como las exportaciones y las importaciones de Brasil, el tipo de cambio y el PBI son factores determinantes que afectan el volumen de exportación, se relacionan y afectan entre ellos, apoyando la teoría económica de Mundell-Fleming que establece la relación de las exportaciones con el tipo de cambio, el ingreso nacional y otros; demostrando para el caso de las exportaciones de Brasil que estos factores son influyentes en el volumen de exportación.

Ramos, C., & Valdiviezo, S. (2015) en su tesis denominada “Relación entre el Tipo de Cambio y el Desarrollo de las Agro Exportaciones no Tradicionales Peruanas en el Periodo 2007 – 2014”, buscan determinar la relación entre el tipo de cambio y las agro exportaciones no tradicionales peruanas en el periodo 2007-2014. Para ello, utilizaron el coeficiente de correlación de Pearson para nalizar directamente el tipo de cambio y cómo este afecta a las exportaciones peruanas, mostrándose una relación inversa entre dichas variables de tal manera que la apreciación de la moneda nacional genera un alza en el valor de las exportaciones y disminuye el costo de las importaciones.

Alejos, L., & Ríos, A. (2019), en su trabajo “Competitividad y los factores que influyen en las exportaciones de cacao de Perú”, analizaron los factores determinantes que influyeron en las exportaciones de cacao en los años de 1990 al 2017, haciendo uso de la regresión lineal y utilizando el método de los mínimos cuadrados (MCO) encontraron que los factores determinantes de exportación estudiados como las exportaciones de america del sur, y la producción de granos son influyentes de manera significativa; además, las exportaciones de Perú en comparación con las de america del sur son competitivas con otros países de este grupo excepto con Ecuador ya que es el principal exportador de la región.
Fernández y Zavala (2018), en su investigación “Impacto de las exportaciones en la producción Nacional, caso del café en el Perú 2008 – 2017”; analizaron el impacto de las exportaciones peruanas de café en la producción nacional durante el periodo 2008-2017. Para ello realizaron un análisis de regresión lineal, en el cual encontraron que el volumen de exportación de café no ha tenido impacto sobre el volumen de producción, sin embargo, el valor de exportación si tiene impacto sobre dicho volumen.

Hidalgo, A. (2016), analizó la producción del cacao en Ecuador en el periodo de 1995 -2013. Para ello, utiliza un método descriptivo en el tiempo en conjunto con el uso de métodos de regresión lineal de (MCO). En este trabajo, el autor estudia la situación de los mercados de cacao en grano en el marco de la economía internacional y realiza un análisis con variables independientes como el precio mundial, la exportación de cacao y producción nacional del cacao. El autor de esta investigación encuentra una relación positiva entre la exportación de cacao en grano, la producción anual y precios internacionales, siendo esta última la más importante en el modelo.

Bui, H., & Chen, Q. (2015), en su investigación denominada análisis de los factores que tienen influencia sobre la exportación de arroz en Vietnam, es clave mencionar que el uso de un modelo de gravedad aplicado en el periodo de estudio 2004-2013, determinaron los factores que generaban el gran impacto en las exportaciones de arroz son el PBI, el precio, la población, y el tipo de cambio en Vietnam. Siendo estos significativos y relacionas directamente con su nivel de exportación.

Adeniran, J.O., Yusuf, S.A., Adeyemi, Olatoke. A. (2014), en su trabajo denominado el impacto del tipo de cambio en la economía de Nigeria (“The Impact of Exchange Rate Fluctuation on the Nigerian Economic Growth: an Empirical Investigation”), desarrollan un análisis mediante una correlación y regresión de mínimos cuadrados ordinarios (MCO) con una data secundaria desde el año 1986 hasta el 2013. Estos investigadores determinaron que el tipo de cambio tiene un impacto positivo pero no significativo para el crecimiento económico de Nigeria. Por otra parte, ellos analizaron la tasa de interés y la inflación, determinando que si bien tienen un impacto negativo este es no significativo.
Por su parte Marinković, S. & Džunić, M. (2018), en su investigación denominada el impacto del tipo de cambio en el desempeño de las exportaciones de Siberia (“Exchange Rate and Export Performance: Evidence from Serbia”), establecen que no existe una relación a largo plazo entre estas variables mencionadas evaluadas mediante la prueba de Engle –Granger con una data de serie de tiempo, mientras que en una prueba de causalidad de Granger si se encontró una causalidad unidireccional del tipo de cambio sobre la exportación. Esto le permitió demostrar que existe una combinación de otras variables que afectan la exportación además del tipo de cambio. Al realizar una regresión lineal se descubre que existe una influencia significativa en la producción nacional, los costos laborales, el equilibrio fiscal y la demanda mundial sobre los datos de exportación. Entonces, se confirma que el tipo de cambio para la exportación de Serbia es un factor no determinante.

Bentivoglio, D., Finco, A., Bucci, G. (2018), en su investigación explica mediante un modelo teórico simple los factores que pueden influenciar en la producción de aceite de palma en Indonesia, con la finalidad de establecer el problema de cointegración y los patrones de causalidad en el estudio. Las variables de cointegración son la producción de aceite de palma, precio del aceite de soya, área cosechada para la producción del aceite de palma en Malasia y el consumo de aceite de palma. Demuestra que las variables tienen una influencia significativa y positiva respecto a la producción del aceite de palma en Indonesia.

Por su parte, Austin, C., & Steyerberg, W. (2015), en su investigación el uso de la regresión lineal como modelo de análisis y el número de variables independientes para su correcta aplicación, tratan respecto al mínimo de variables independientes que se debe usar para una regresión lineal el concluye que estas deben ser mínimo dos las necesarias para generar unos coeficientes aceptables. Para su análisis, ellos emplearon una simulación de series de Monte Carlo para examinar el impacto de la cantidad de sujetos por variable.

Verter, N., & Bečvářová, V. (2016) en su publicación “The impact of agricultural exports on economic growth in Nigeria”, busca determinar si la agro exportación lidera el crecimiento económico de Nigeria. Este autor llega a comprobar, a través del uso del modelo de mínimos cuadrados ordinarios (MCO), un análisis de causalidad de Granger, y de enfoques de descomposición de varianza, que efectivamente la agricultura y su exportación lideran el crecimiento económico de dicho país.
Finalmente, Larios, F., Álvarez, J., & Uribe, Q. (2017) en la publicación literaria “Fundamentos de econometría: teoría y problemas” nos explican el desarrollo de las teorías aplicativas para el estudio, siendo la regresión lineal múltiple el modelo que se siguió para desarrollar el presente estudio.

Marco Teórico

Para comprender mejor las variables a utilizar, es necesario definirlas o conceptualizarlas en base a los estudios revisados.

Exportación.

Definición.
Como exportación denominamos la acción y efecto de exportar. Exportar, en este sentido, es la actividad comercial que consiste en vender productos y servicios a otro país. Asimismo, como exportación puede designarse al conjunto de mercancías que se exportan. («Significado de Exportación», s.f.).

Según Ballesteros (2005) se refiere solo “a toda mercancía que sale del territorio comunitario” (p. 191). Es decir, cualquier mercadería que sale del territorio aduanero de un país, y en el caso de pertenecer a una comunidad de países a la salida de los bienes de esa comunidad.

Producción nacional.
También conocido como Producción Nacional Bruto (PNB), según la RAE se define como “Valor de todos los bienes y servicios obtenidos en la economía de un país en un período de tiempo dado.
Tipo de cambio nominal promedio.
En la literatura citada se menciona que “es el precio relativo de una moneda con respecto de otra. Más precisamente, se define como el número de unidades de moneda doméstica por unidad de moneda extranjera o, alternativamente” (Jiménez, 2018, p. 554). Se puede ejemplificar eso como una unidad de sol peruano equivale a tres unidades de dólar americano.

Regresión es pura.
Si las variables involucradas no son estacionarias, los procedimientos de inferencia habituales pierden validez…En particular, y si bien las variables involucradas pueden no representar relación alguna, los estadísticos t tienden a estar sesgados hacia el rechazo de la hipótesis nula. Lo anterior viene usualmente acompañado por un R-cuadrado elevado y un estadístico Durbin Watson cercano a cero. (Castro & Rivas-Llosa, 2003, p. 575).

Podemos entender que la regresión es pura viene del uso de dos variables comparadas que no son estacionarias sin embargo presentan una relación muy elevada y un estadístico de Durbin Watson cercano a cero entre estas dos.

Partida arancelaria.
“Se crea en 1950 como una forma de homogenizar la nomenclatura aduanera para todos los países miembros del GATT (General Agreement on Tariffs and Trade) y brindar un valor común a los productos” (Acosta, 2005, p. 21). En este caso se crean series numéricas que identifican el mismo producto de la misma manera en todas las naciones miembros.

Muestra no probabilística.
Definición.
Para Hernández Sampieri, Fernández, y Baptista (2014) en las muestras no probabilística mencionaron “la elección de los elementos no depende de la probabilidad, sino de causas relacionadas con las características de la investigación o los propósitos del investigador” (p. 176).

Regresión lineal multiple.
Concepto.
“El análisis de regresión consiste en obtener un modelo de dependencia promedio que explique lo menor posible la variable Y en función de la variable X” (Sarabia & Pascual, 2005, p. 105). Esta teoría tiene dos objetivos principales:
1. “Establecer una relación de dependencia entre las variables X e Y mediante una función matemática (una recta, parábola, etc.), y obtener esa función a partir de un conjunto de datos” (Sarabia & Pascual, 2005, p. 105).
2. “Predecir los valores de la variable dependiente a partir de ciertos valores de la variable independiente” (Sarabia & Pascual, 2005, p. 105).

Modelo Teórico.

La aplicación del modelo económico de Mínimos cuadrados ordinarios (MCO) es el modelo más adecuado para el análisis de regresión lineal múltiple que se muestra a continuación:

\[X = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon \]

Aplicando la fórmula para nuestra ecuación se desarrolla de la siguiente manera.

\[X = \beta_0 + \beta_1 XALC_1 + \beta_2 TC_2 + \beta_3 PROD_3 + \beta_4 PDT_4 + \varepsilon \]

Donde:

- \(X \): Volumen de exportación de Espárragos del Perú al mundo por toneladas.
- \(XALC_1 \): Volumen de exportación de Espárragos América Latina y el Caribe al mundo por toneladas (ton).
- \(TC_2 \): Tipo de cambio promedio (S/ por $).
- \(PROD_3 \): Producción de Espárrago de Perú (ton).
- \(PDT_4 \): Precio de exportación de Perú de Espárragos (USD/ton)
- \(\varepsilon \): Error aleatorio.

Volumen de exportaciones

La exportación agrícola en el Perú ha sufrido fluctuación constante en los últimos 20 años de exportaciones realizadas por esta industria; sin embargo se debe considerar un crecimiento durante este periodo llegando a más de 3.0 en su tasa de crecimiento hasta el año 2014 (Morris et al., 2017).

Las exportaciones agrarias de Perú están compuestas por una gran variedad de productos entre los cuales tenemos a tradicionales y no tradicionales, estos últimos han tenido un crecimiento en las últimas dos décadas, entre estos tenemos que mencionar, la quinua, el plátano, cacao, mango, palta, espárrago, uvas.
El volumen de exportación en Perú se mide en kilogramos para su control y estudio. La entidad encargada de generar esta base de datos es SUNAT-ADUANAS.

Tipo de cambio promedio

De acuerdo con el INEI, en el Perú, el tipo de cambio se sabe es la cotización de dólar americano, tomando en cuenta el número de soles necesarios para comprar un dólar. Lo que se entiende como un aumento del tipo de cambio representa una depreciación (apreciación), o pérdida (ganancia) de valor, de nuestra moneda contra al dólar.

Producción nacional

Se refiere a todos los bienes producidos por el estado, según el INEI este tiene 3 maneras de medirse, el método de la producción se emplea para obtener un índice mensual, mientras que el método de la producción, gasto e ingreso se usan para sacar las cifras trimestrales y anuales.

Precio de exportación

El precio de exportación es el precio FOB en dólares americanos por el cuál se vende un bien exportable: este precio solo considera el precio de venta del producto más los gastos por el despacho de exportación y de transporte hasta el puerto o aeropuerto, no se toma en cuenta el flete internacional ni los gastos en destino.

Objetivos e Hipótesis

Objetivos.

Objetivo General.

Objetivos específicos.

- Determinar la influencia entre el volumen de exportación de espárragos de América Latina y el Caribe en el Perú y el volumen de las exportación de espárrago de Perú en el Perú (2007 – 2018).
- Determinar la influencia del precio de exportación del espárrago y el volumen de las

- Determinar la influencia de la producción de espárragos y el volumen de las exportaciones de espárrago de Perú (2007 – 2018).

- Determinar la influencia del tipo de cambio promedio (S/ por $) y el volumen de las exportaciones de espárrago de Perú (2007 – 2018).

Hipótesis.

Hipótesis General.

Los factores determinantes influyen de manera significativa en la exportación de espárrago en el Perú (2007-2018).

Hipótesis Específicas.

- El precio de exportación de espárrago en el Perú influye significativamente en la exportación de espárragos en el Perú (2007-2018).

- La producción de espárragos en el Perú influye significativamente en la exportación de espárragos en el Perú (2007-2018).

- El Tipo de cambio promedio (S/ por $) en el Perú influye significativamente en la exportación de espárragos en el Perú (2007-2018).

Hipótesis estadísticas.

Hipótesis Nulas.

- El volumen de exportación de espárragos en América Latina y el Caribe no tiene correlación con el volumen de exportación de espárragos en el Perú (2007-2018).

- El precio de exportación de espárrago en el Perú no tiene correlación con el volumen de exportación de espárragos en el Perú (2007 – 2018).

- La producción de espárragos de Perú no tiene correlación con el volumen de exportación de espárragos en el Perú (2007-2018).

- El tipo de cambio promedio (s/ por $) en el Perú no tiene correlación con el volumen de exportación de espárragos en el Perú (2007-2018).
Hipótesis Alternas.

- El volumen de exportación de espárragos en América Latina y el Caribe tiene correlación con la producción de espárragos en el Perú (2007-2018).

- El precio de exportación de espárrago en el Perú tiene correlación con la producción de espárragos en el Perú (2007-2018).

- La producción de espárragos tiene correlación con la producción de espárragos en el Perú (2007-2018).

- El tipo de cambio promedio (S/ por $) en el Perú tiene relación con la producción de espárragos en el Perú (2007-2018).

Método

Tipo y Diseño de Investigación

Tipo de investigación.

Es una investigación aplicada pues se busca llevar a cabo los diversos procedimientos cuantitativos a fin de medir la relación entre las variables de estudio.

Lester y Lester (2012) mencionado por Hernández Sampieri et al. (2014) “consideran que los planteamientos son útiles para: 1) evaluar, 2) comparar, 3) interpretar, 4) establecer precedentes y 5) determinar causalidad y sus implicaciones. Esta tipología es muy adecuada para la investigación aplicada” (p. 42).

Diseño de investigación.

El diseño de investigación para este estudio es Descriptivo – Correlacional, según Hernández Sampieri et al. (2014) mencionó:

Este tipo de estudios tiene como finalidad conocer la relación o grado de asociación que exista entre dos o más conceptos, categorías o variables en una muestra o contexto en particular. En ocasiones sólo se analiza la relación entre dos variables, pero con frecuencia se ubican en el estudio vínculos entre tres, cuatro o más variables. (p. 93).
Podemos agregar que su diseño es no experimental, por lo que Hernández Sampieri et al. (2014) mencionó “es un estudio que se realiza sin la manipulación deliberada de variables y en los que sólo se observan los fenómenos en su ambiente natural para analizarlos” (p. 152). Su finalidad es describir una o más variables y analizar su injerencia en distintos momentos de tiempo dado. Es decir, se muestra un análisis sobre la relación de las variables y su evolución durante un periodo de tiempo de un punto hasta otro.

Variables

En esta investigación se hará uso de las siguientes variables:

Variables dependientes.

Volumen exportado del espárrago al mundo trimestralmente desde el año 2007 hasta el 2018.

Variables independientes.

- Cantidad de espárragos frescos exportados a nivel región América Latina y el Caribe (Toneladas).
- Precio de exportación de Perú de espárragos (USD/Toneladas).
- Producción de espárragos frescos de Perú (Toneladas).
- Tipo de cambio (Soles / USD).

Participantes

Definición de la población.

La población está conformada por todas las operaciones de comercio exterior realizadas con Perú por los países importadores de espárrago en el mundo durante el periodo 2007 al 2018.

Proceso de muestreo.

La muestra es no probabilística está conformada por todo el volumen trimestral exportado por Perú a los países socios desde el año 2007 hasta el 2018.
Tamaño de la muestra.

Se ha encontrado información solo desde el año 2007-2018 del volumen total de las exportaciones de Perú por consiguiente se usa todo el registro en periodos trimestrales del producto espárrago fresco realizadas desde el Perú al mundo desde el año 2007 hasta el 2018.

Instrumentos

En esta investigación la recopilación de datos se realizó a través de fuentes secundarias de distintos portales de bases de datos y estadística oficiales. Para los datos de las exportaciones de espárrago fresco en toneladas se empleó el portal de la organización denominada “International Trade Centre” y su herramienta TradeMaps, además se obtuvo de esta herramienta la producción del resto de países de América Latina y el Caribe, así como el precio de exportación. Para la producción de espárrago peruano fresco fue obtenido de la plataforma de base de datos del Banco Central de Reserva del Perú (BCRP), al igual que la información sobre el tipo de cambio.

Procedimiento

Las fuentes de recolección de datos son secundarias debido a que las variables a analizar son información pública recopilada por entidades del estado peruano y por organizaciones internacionales y empresas de información privada.

1. Recolección de registros de exportaciones de Perú en TRADEMAP por cantidad de Volumen en toneladas, datos de tipo cuantitativo.
2. Recolección de registros de exportaciones de los países de América Latina y el Caribe en TRADEMAP por cantidad de Volumen en toneladas, datos de tipo cuantitativo.
3. Recolección de registros de precio de exportación de Perú en TRADEMAP, datos de tipo cuantitativo.
4. Recolección de registros del Banco Central de Reserva del Perú del Tipo de Cambio promedio trimestral, datos de tipo cuantitativo.
5. Recolección de registros del Banco Central de Reserva del Perú del Índice de precios al consumidor, datos de tipo cuantitativo.
Análisis de datos

Después de obtener la base de datos, esta información se tabuló en una matriz donde se ordena toda la información recopilada para poder ser ejecutada posteriormente en el programa estadístico “Eviews 10”. Los datos serán ejecutados y analizados mediante una regresión lineal múltiple. Esta información fue fundamental para el desarrollo de las conclusiones, el contraste de las hipótesis y las recomendaciones de política. La aplicación se desarrolla de la siguiente manera:

- Se realiza el análisis de regresión espuria al ejecutar la ecuación de regresión en las variables X, XALC, PROD, TC, PDT resultando una regresión espuria y no ser estacionarias.
- Se realizan las pruebas de estacionariedad en cada variable.
- Se ejecuta la prueba de causalidad de forma conjunta a las variables.
- Después se realiza la prueba de cointegración para confirmar que a largo plazo los datos seguirán explicando relación.
- Luego se ejecuta la estimación del modelo mediante el coeficiente de correlación con el ARMA con todas las variables independientes frente a la dependiente.
- Se realiza la prueba de significancia individual (Prueba t) para comprobar si individualmente cada variable independiente explica la relación con la variable dependiente.
- Se efectúa la prueba de significancia conjunta (Prueba F).
- Se ejecuta la prueba de autocorrelación y también se aplica una prueba de modelo autoregresivo AR(2) y AR(10).
- Se ejecutó la prueba de heterocedasticidad mediante el test de Breush Pagan Godfrey.
- Se ejecutó la prueba de multicolinealidad con el test VIF.
- Se aplica la prueba de normalidad de los residuos.
- Y la prueba de estabilidad mediante el test de Cusum al cuadrado.
Resultados

Presentación de Resultados

Modelo de análisis de regresión lineal.

En este capítulo abordaremos el resultado obtenido del modelo adecuado encontrado luego de regresionar las variables analizando sus diversas propiedades, estacionariedad, causalidad, relación en el largo plazo y las pruebas de bondad de ajuste de las propiedades de la regresión, ejecutadas en el programa Eviews10 mediante la correcta aplicación de las pruebas en este programa de acuerdo a la publicación de Larios-Meoño, Fernando (2017). Previo al correcto análisis de las pruebas se analiza el modelo tal como se presenta:

Especificación del modelo de regresión lineal.

\[X = \beta_0 + \beta_1XALC_1 + \beta_2TC_2 + \beta_3PROD_3 + \beta_4PDT_4 + \epsilon \]

Donde:

\(X \): Volumen de exportación de Espárragos del Perú al mundo por toneladas.

\(XALC_1 \): Volumen de exportación de Espárragos América Latina y el Caribe al mundo por toneladas (ton).

\(TC_2 \): Tipo de cambio promedio (S/ por $).

\(PROD_3 \): Producción de Espárrago de Perú (ton).

\(PDT_4 \): Precio de exportación de Perú de Espárragos (USD/ton)

\(\epsilon \): Error aleatorio.

Regresión espuria

Al realizar la primera estimación del modelo el resultado obtenido da indicios de ser espurio al tener un R-squared igual a 0.50 lo que indica que la relación entre las variables no es buena. Se entiende que se ha logrado un buen ajuste del modelo cuando el coeficiente de determinación R-squared está entre 0.70 y 0.90. Asimismo, se observa que no existe significancia individual en 3 de las cuatro variables independientes, ya que el p-value de dichas variables es mayor al nivel de significancia de 5%. El estadístico de Durbin-Wattson (D.W) obtenido es engañoso ya que al evaluar los correlogramas no concuerda con la medida. El resultado obtenido es de esta forma al presentar las variables raíz unitarias es decir no ser estacionarias.

Tabla 1 Test de Regresión Espuria

<table>
<thead>
<tr>
<th>Mínimos Cuadrados</th>
<th>Coeficiente</th>
<th>Rangos óptimos</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-squared</td>
<td>0.547482</td>
<td>70<X<90</td>
</tr>
<tr>
<td>Durbin-Watson stat</td>
<td>1.930578</td>
<td>1<X<2</td>
</tr>
</tbody>
</table>

Análisis de estacionariedad

La estacionariedad en un modelo de regresión múltiple es de suma importancia ya que si las variables no son estacionarias las propiedades de los valores hallados en la corrida del modelo serán afectados además de que existe una gran probabilidad de que la estimación llegue a ser espuria.

Es por eso que luego de realizada la primera estimación, el modelo que se estimó fue corregido para que cumpla con la estacionariedad al hacerse el test de Dickey Fuller Aumentado en primeras diferencias con respecto a las variables que se están estudiando como:
X: Volumen de exportación de espárragos del Perú al mundo.

PROD: Producción de espárragos del Perú.

PDT: Precio de exportación de espárragos de Perú.

XALC: Volumen de exportación de espárragos de América Latina y el Caribe al resto del mundo.

TC: Tipo de cambio.

Todos los p_valor de las variables fueron menores al 5% que es la medida que determina la estacionariedad.

Test de Causalidad

Se efectuó este test con la finalidad de comprobar la endogeneidad de la variable dependiente X lo que determinara la validez del modelo. En este caso de análisis VAR se comprueba que en forma conjunta las variables PROD, PDT, XALC, TC explican adecuadamente el volumen de exportación de espárragos que el Perú vende al resto del mundo.

Test de Cointegración

Al hacer la prueba para comprobar la existencia de relación en el largo plazo entre las variables de estudio se aprecia un vector de cointegración aplicando el método de máximo valor y de la traza con 5% de significancia lo que determina que el modelo a largo plazo seguirá manteniendo una relación de explicación.

Estimación del modelo

\[X = 0.23 \times \text{PROD} - 2.94 \times \text{PDT} - 0.00044 \times \text{XALC} + 3337.02 \times \text{TC} + 8289.8267 \]
Tabla 2 Estimación del modelo

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coeficiente</th>
<th>Prob.</th>
<th>R-cuadrado</th>
<th>Durbin-Watson</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROD</td>
<td>0.234843</td>
<td>0.0000</td>
<td>0.938037</td>
<td>1.902215</td>
</tr>
<tr>
<td>PDT</td>
<td>-2.948303</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XALC</td>
<td>-0.000441</td>
<td>0.0275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC</td>
<td>3337.021</td>
<td>0.0056</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coeficiente de correlación del modelo (R² ajustado)

Al estimar el modelo obtenemos un R cuadrado ajustado de 0.92 lo cual nos indica que existe una buena relación entre las variables independientes y las dependientes es decir el 92% de los efectos es explicado por esa relación al regresionalos. Se entiende el coeficiente de correlación como la relación de explicación de las variables independientes con respecto a la variable endógena el cual cuantificara en qué medida es dicha interrelación. Un valor cercano a 1 es adecuado mientras un valor próximo a cero indica la poca existencia de explicación.

Significancia individual (Prueba t)

\[H_0 : \text{El modelo no tiene significancia individual (p-value > 0.05)} \]

\[H_1 : \text{El modelo tiene significancia individual (p-value < 0.05)} \]

Los coeficientes de las variables son significativos al obtener un p-valor menor al 5% (0.05) o lo que es lo mismo al ser t- statistic mayor a 2 en valor absoluto. Se acepta la hipótesis alternativa para todos los casos. La prueba t de student es empleada en las diversas investigaciones de modelos de regresión múltiple lineal con la finalidad de determinar la significancia de cada variable independiente con respecto a la dependiente.
Tabla 3 Prueba t

<table>
<thead>
<tr>
<th>Variable</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROD</td>
<td>9.742222</td>
<td>0.0000</td>
</tr>
<tr>
<td>PDT</td>
<td>-4.602356</td>
<td>0.0000</td>
</tr>
<tr>
<td>XALC</td>
<td>-2.287480</td>
<td>0.0275</td>
</tr>
<tr>
<td>TC</td>
<td>2.930833</td>
<td>0.0056</td>
</tr>
</tbody>
</table>

Hay significancia individual en el modelo cada variable independiente explica muy bien por separado las exportaciones de esparrago.

Significancia Conjunta (Prueba F)

\(H_0 \) : El modelo no tiene significancia connunta (p-value > 0.05)

\(H_1 \) : El modelo tiene significancia conjunta (p-value < 0.05)

Al analizar la significancia conjunta o explicación en conjunto de las variables independientes con respecto a la variable dependiente \((X)\) se acepta la hipótesis alternativa al ser \(\text{Prob}(F) \) igual a 0.00.

\(\text{Prob}(F\text{-statistic}) \quad 0.000000 \)

Al obtener significancia conjunta lo entendemos como una explicación adecuada de las variables en la variable endógena. La prueba F de Fisher mide la relación global o conjunta de las variables exógenas con respecto a la variable explicada con un 95% de confianza y un p-valor valido de explicación entre 0 y 0.05.

Prueba de Auto correlación

El modelo inicialmente presenta auto correlación, pero es corregido por una de las técnicas más usuales de corrección el modelo auto regresivo AR(p) que son los rezagos que se aplican en el orden de coeficientes. En este caso aplicamos rezagos de orden 2 AR (2), y orden 10 AR (10). Luego de implementado los rezagos se obtuvo un Durbin Watson de 1.90. Se debe recalcar que la auto correlación se explica como la relación que existirá entre los residuos de un modelo atraves del tiempo.
Hₐ : El modelo presenta autocorrelación (D.W > 2.15 o D.W < 1.85)

H₁ : El modelo no presenta autocorrelación (1.85 < D.W < 2.15)

El D. W es 1.90 por lo que se encuentra dentro del intervalo de no auto correlación. Se acepta la hipótesis alternativa.

Prueba de Heterocedasticidad

H₀ : El modelo presenta Homocedasticidad (p-value > 0.05)

H₁ : El modelo presenta Heterocedasticidad (p-value < 0.05)

Para detectar el problema de heterocedasticidad se aplica el test de Breush Pagan Godfrey. Se entiende como heterocedasticidad a la relación que existe entre las varianzas estimadas de los residuos con los valores independientes del modelo que se estudia. Se obtiene Prob.Chi-Square (4) = 0.1833 el cual es mayor a 0.05 por lo que se acepta la hipótesis nula descartando de esta forma la presencia de heterocedasticidad en la regresión.

Tabla 4 Test de Heterocedasticidad - Breusch-Pagan-Godfrey

<table>
<thead>
<tr>
<th>Prob. Chi-squared(4)</th>
<th>P-value referencia de test</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1833319</td>
<td>H0 = p-value > 0.05</td>
</tr>
</tbody>
</table>

Prueba de Multicolinealidad

H₀ : El modelo presenta multicolinealidad (VIF > 10)

H₁ : El modelo no presenta multicolinealidad (1 < VIF < 10)

La multicolinealidad es uno de los problemas que existe al hacer las estimaciones de los modelos econométricos de regresión múltiples. Se entiende como la posible relación que exista entre las variables exógenas dentro de la estimación lo cual dificulta de sobre manera los resultados. Para detectar dicho problema uno de los métodos más utilizados es la prueba de inflación de varianza (VIF).
Tabla 5 Prueba de Inflación de Varianza (VIF)

<table>
<thead>
<tr>
<th>Variable</th>
<th>VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROD</td>
<td>1.355124</td>
</tr>
<tr>
<td>PDT</td>
<td>2.156929</td>
</tr>
<tr>
<td>XALC</td>
<td>1.850814</td>
</tr>
<tr>
<td>TC</td>
<td>1.133885</td>
</tr>
</tbody>
</table>

Los valores VIF de las variables independientes se encuentra entre 1 y 10 muy cerca de 1 por lo que se confirma la no existencia de multicolinealidad lo que hace que se acepte la hipótesis alternativa.

Prueba de Normalidad

\(H_0 \) : El modelo presenta normalidad en los residuos (p-value > 0.05)

\(H_1 \) : El modelo no presenta normalidad en los residuos (p-value < 0.05)

Por teoría estadística toda distribución de residuos de los modelos econométricos deben aproximarse a una distribución normal razón por la que se determinara la existencia de esta propiedad al estimar los residuos de serie de tiempos. La aplicación del test da un p-valor = 0.5 lo que genera que se acepte la hipótesis nula.
Prueba de Estabilidad

El modelo presenta estabilidad a lo largo del periodo analizado 2007-2018. Las variables independientes han explicado adecuadamente a la variable dependiente ello se comprueba al observar en la gráfica (Test de cusum al cuadrado) que la línea azul que representa dicha relación se mantiene dentro de la banda de confianza (líneas anaranjada). Al hallar la estabilidad estamos descartando que el modelo tenga el problema de especificación además de estimaciones sesgadas e inconsistentes descartando la no validez de la regresión.

Gráfico 1 Prueba de estabilidad
Discusión

Los resultados obtenidos en esta investigación concuerdan con los resultados obtenidos en la investigación de Bottger (2016), donde el precio de exportación tiene una alta influencia sobre la exportación de espárragos y es significativo en ambos casos. Intuitivamente, se considera que ambos tienen el mismo resultado al ser productos similares los estudiados, y solo se comparan las variables similares estudiadas en ambas investigaciones.

Los resultados de tipo de cambio se apoyan en los resultados también obtenidos en la investigación de Ambrosio, R et al. (2017) donde se contrasta ambos resultados del tipo de cambio siendo estos significativos para el volumen de exportación debido a que según la teoría económica de Mundell-Fleming el tipo de cambio es parte de las exportaciones netas de un país.

La hipótesis alternativa que señala una relación lineal entre la exportación nacional de espárragos y la producción nacional. En referencia a esta hipótesis se respalda los resultados de estudio con el estudio de referencia ya que ambos relacionan la producción nacional del producto con el volumen de exportación de este. Se puede suponer resultados similares por el empleo de modelos de estudio similares y que siguen periodos de estudio similares con diferencia de 2 años y solo se comparan las variables estudiadas en ambas investigaciones.

Los resultados obtenidos sobre la exportación de otros países de america latina y el caribe son apoyados por la investigación de Alejos & Ríos (2019), donde llegamos ambos a la conclusión similar de que la exportación de otros países si tiene un influencia sobre la exportación del Perú y afecta el volumen. Si bien el producto no es el mismo en ambas investigaciones se puede considerar que hay relación por pertenecer a la misma industria (agroindustria) y se manejan tiempos de producción para los productos que pueden permitir homogenizar ambos estudios.

La exportación y su nivel de volumen comparado con la producción nacional es un resultado no sustentado por el estudio de Fernández y Zavala (2018), donde su estudio del café demuestra que la producción no afecta al volumen de exportación, sin embargo podemos considerar que existe un factor de periodo que no apoya tanto las variables ya que mientras nuestro estudio se desarrolla en más de 10 años de datos el de antecedente se desarrolla en menos de 10 años de datos.
Conclusiones

- Al culminar con el análisis de los resultados y concluir con la ejecución de las pruebas estadísticas a las variables: Podemos concluir que las variables guardan una relación con el volumen de exportación de espárragos peruano y se puede determinar que este varía una cantidad determinada por unidad de cambio en las variables independientes, ya sea la variación positiva o negativa.
- Los datos explican más del 90% de la relación entre las variables.
- En las exportaciones espárrago peruano se pueden explicar que en promedio por cada unidad de cambio en las exportaciones de espárrago en el grupo de América latina y el caribe le corresponde una disminución de 0.00044 toneladas de exportación de espárrago peruano cuando todas las demás variables se mantienen constantes (ceteris paribus)
- Por cada unidad de cambio de la producción de espárrago en positivo le corresponde un incremento de 0.02348 toneladas de exportación de espárrago cuando todas las variables permanezcan constantes (ceteris paribus).
- Para el precio de exportación en promedio por cada unidad de cambio en positivo que exista, se refleja en la exportación de espárrago como una disminución en 2.94830 toneladas cuando todas las variables permanezcan constantes (ceteris paribus).
- Mientras que en el tipo de cambio en promedio por cada unidad de cambio en positivo que exista en esta variable se entiende que la exportación de espárrago aumenta en 3337.021 toneladas cuando todas las variables permanezcan constantes (ceteris paribus).
Recomendaciones

Para mejorar los resultados y la fiabilidad del modelo se recomienda emplear más variables, revisar una mayor cantidad de investigaciones para ampliarla y probar con otros modelos estadísticos que sigan confirmando la relación entre las variables.

Además, se recomienda expandir la base de datos y a por lo menos 100 datos para crear mejorar los resultados del análisis. Por la falta de información en las exportaciones de este producto solo se pudo trabajar 12 años de información convertidos en 48 datos trimestrales para cada variable.

La gran mayoría de las exportaciones de espárrago en el Perú son de manera indirecta, es decir, existe un tercero que se puede llamar bróker o representante que es el vínculo entre los productores y los mercados consumidores. Se recomienda que el estado peruano incentive a los productores peruanos de espárrago desarrollar habilidades que les permitan negociar directamente con los compradores en el extranjero, capacitarse y prepararse para desarrollar mejores oportunidades de negocio y rentabilidad para el productor.
Referencias

Acosta, F. (2005). Clasificación arancelaria de las mercancías: Recuperado de http://biblio.upmx.mx/library/index.php?title=87916&query=@title=Special:GSM SearchPage@process=@autor=ACOSTA%20ROCA,%20FELIPE%20@mode=&recnum=1

Significado de Exportación. (s.f.). Recuperado 30 de junio de 2019, de Significados.com website: https://www.significados.com/exportacion/

Matriz de consistencia

MATRIZ DE CONSISTENCIA

AUTOR: Renato Ormeño

<table>
<thead>
<tr>
<th>PROBLEMA</th>
<th>OBJETIVOS</th>
<th>HIPÓTESIS</th>
<th>VARIABLE DEPENDIENTE</th>
<th>METODOLOGIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problema General</td>
<td>Objetivo General</td>
<td>Hipótesis General</td>
<td>Volumen de Exportación de Espárragos del Perú al mundo por toneladas</td>
<td></td>
</tr>
<tr>
<td>¿Cuál es el efecto de los factores determinantes de la exportación de espárragos en el Perú (2007 – 2018)?</td>
<td>Determinar el efecto de los factores determinantes de la exportación de espárragos en el Perú (2007 – 2018).</td>
<td>Ho: Los factores determinantes influyen de manera significativa en la exportación de espárragos en el Perú (2007-2018)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VARIABLES INDEPENDIENTES</th>
<th>METODOLOGIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Volumen de Exportación de Espárragos frescos de América Latina y el Caribe al mundo por toneladas</td>
<td>Tipo de Investigación: Aplicada</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problemas Específicos</th>
<th>Objetivos Específicos</th>
<th>Hipótesis Específicas</th>
<th>Nivel:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. ¿Cuál es el efecto del volumen de exportación de espárragos en América Latina y el Caribe en la exportación de espárragos en el Perú (2007-2018).</td>
<td>- Determinar el efecto entre el volumen de las exportaciones de espárrago de América Latina y el Caribe en la exportación de espárragos de Perú (2007 – 2018).</td>
<td>H1: El volumen de exportación de espárragos en América Latina y el Caribe influye significativamente en la exportación de espárragos de Perú (2007-2018).</td>
<td>Es descriptivo</td>
</tr>
</tbody>
</table>

<p>| - Precio de exportación de Perú de espárragos (USD/ton) | | | |</p>
<table>
<thead>
<tr>
<th>b. ¿Cuál es el efecto del precio de exportación de espárrago en el Perú en la exportación de espárragos en el Perú (2007-2018).</th>
</tr>
</thead>
<tbody>
<tr>
<td>c. Determinar el efecto del precio de exportación de espárragos de Perú y el volumen de exportación del espárrago en el Perú (2007 – 2018).</td>
</tr>
<tr>
<td>H2: -El precio de exportación de espárrago en el Perú influye significativamente en el volumen de exportación de espárragos de Perú (2007-2018)</td>
</tr>
<tr>
<td>Diseño: Descriptivo correlacional De corte longitudinal Prospectivo (Causa – Efecto)</td>
</tr>
<tr>
<td>- Producción nacional de espárragos de Perú por toneladas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>c. ¿Cuál es el efecto de la producción de espárragos en la exportación de espárragos de Perú 2007 – 2018?</th>
</tr>
</thead>
<tbody>
<tr>
<td>d. Determinar el efecto entre la producción de espárragos en el Perú y el volumen de las exportaciones de espárrago de Perú (2007 – 2018).</td>
</tr>
<tr>
<td>H2: La producción de espárragos en el Perú influye significativamente en el volumen de exportación de espárragos de Perú (2007-2018).</td>
</tr>
<tr>
<td>POBLACIÓN: La población de nuestra investigación está dada por los datos históricos de exportación de espárragos frescos</td>
</tr>
<tr>
<td>MUESTRA: para nuestro estudio usaremos información histórica entre los años 2007 y 2018</td>
</tr>
<tr>
<td>TECNICAS: Recojo de fuentes secundarias</td>
</tr>
<tr>
<td>INSTRUMENTO: Fichas con datos históricos</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d. ¿Cuál es el efecto tipo de cambio promedio en la exportación de espárragos Perú 2007 – 2018?</th>
</tr>
</thead>
<tbody>
<tr>
<td>e. Determinar el efecto del tipo de cambio promedio (S/ por $) y el volumen de las exportaciones de espárrago de Perú (2007 – 2018).</td>
</tr>
<tr>
<td>H3: El Tipo de cambio promedio (S/ por $) en el Perú influye significativamente en el volumen de exportación de espárragos de Perú (2007-2018)</td>
</tr>
<tr>
<td>TECNICAS: Recojo de fuentes secundarias</td>
</tr>
<tr>
<td>INSTRUMENTO: Fichas con datos históricos</td>
</tr>
</tbody>
</table>
2. Pruebas en EViews 10®

Regresión espuria

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coeficiente</th>
<th>Error Std.</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>XALC</td>
<td>-9.30E-05</td>
<td>0.000425</td>
<td>-0.218712</td>
<td>0.8279</td>
</tr>
<tr>
<td>TC</td>
<td>5872.588</td>
<td>4512.851</td>
<td>1.301303</td>
<td>0.2001</td>
</tr>
<tr>
<td>PROD</td>
<td>0.444419</td>
<td>0.063198</td>
<td>7.032191</td>
<td>0.0000</td>
</tr>
<tr>
<td>PDT</td>
<td>-4.005368</td>
<td>2.369445</td>
<td>-1.690425</td>
<td>0.0982</td>
</tr>
<tr>
<td>C</td>
<td>-15371.68</td>
<td>14558.08</td>
<td>-1.055887</td>
<td>0.2969</td>
</tr>
</tbody>
</table>

R-squared 0.547482 Mean dependent var 30208.70
Adjusted R-squared 0.505388 S.D. dependent var 11605.20
S.E. of regression 8161.784 Akaike info criterion 20.95065
Sum squared resid 2.86E+09 Schwarz criterion 21.14556
Log likelihood -497.8155 Hannan-Quinn criter. 21.02430
F-statistic 13.00599 Durbin-Watson stat 1.930578
Prob(F-statistic) 0.000001
Estacionariedad de "X"

Null Hypothesis: X has a unit root
Exogenous: Constant
Lag Length: 5 (Automatic - based on SIC, maxlag=9)

<table>
<thead>
<tr>
<th>t-Statistic</th>
<th>Prob.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augmented Dickey-Fuller test statistic</td>
<td>-3.095624308976232</td>
</tr>
</tbody>
</table>

Test critical values:
1% level: -3.59661595909661
5% level: -2.933157852336413
10% level: -2.60486661597914

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(X)
Method: Least Squares
Date: 07/02/19 Time: 01:18
Sample (adjusted): 7 48
Included observations: 42 after adjustments

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X(-1)</td>
<td>-0.81538590533690250.2633995032835759-3.095624308976232</td>
<td>0.003851812800484338</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D(X(-1))</td>
<td>-0.1625003286977560.249990582839409</td>
<td>-0.650025799068455</td>
<td>0.5199196009461618</td>
<td></td>
</tr>
<tr>
<td>D(X(-2))</td>
<td>-0.12065504878345120.23181474505912110.5204804750347560.6060058972712866</td>
<td>-0.4893219358298606</td>
<td>0.1043306328701934</td>
<td></td>
</tr>
<tr>
<td>D(X(-3))</td>
<td>-0.28514403582472330.201882327314987</td>
<td>1.412385615381312</td>
<td>0.6060058972712866</td>
<td></td>
</tr>
<tr>
<td>D(X(-4))</td>
<td>0.4893219358298606</td>
<td>0.1043306328701934</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D(X(-5))</td>
<td>0.2619897915531531</td>
<td>0.1043306328701934</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>25242.63169347897</td>
<td>8031.398265445801</td>
<td>0.00339787109545177</td>
<td></td>
</tr>
<tr>
<td>R-squared</td>
<td>0.9679522643973522</td>
<td>826.0449523809529</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.962458366564999</td>
<td>1.0541371752081</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.E. of regression</td>
<td>3169.34269300707</td>
<td>16357.3371352081</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akaike info criterion</td>
<td>19.11144782896303</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schwarz criterion</td>
<td>19.40105943201025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-394.340440482236</td>
<td>19.217601393579814</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durbin-Watson stat</td>
<td>1.20473677987214e-0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prob(F-statistic) 24
Estacionariedad de “XALC”

Null Hypothesis: XALC has a unit root
Exogenous: Constant
Lag Length: 9 (Automatic - based on SIC, maxlag=9)

<table>
<thead>
<tr>
<th>Test critical values:</th>
<th>1% level</th>
<th>5% level</th>
<th>10% level</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-Statistic</td>
<td>-26.3388</td>
<td>-2.94114</td>
<td>-2.60966</td>
</tr>
<tr>
<td>Prob.*</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(XALC)

Method: Least Squares

Date: 07/02/19 Time: 01:25

Sample (adjusted): 11 48

Included observations: 38 after adjustments

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>XALC(-1)</td>
<td>-0.6756226</td>
<td>0.0256512</td>
<td>-26.3388</td>
<td>92</td>
</tr>
<tr>
<td>D(XALC(-1))</td>
<td>0.1163178</td>
<td>0.0307573</td>
<td>3.78178</td>
<td>0.000786</td>
</tr>
<tr>
<td>D(XALC(-2))</td>
<td>0.0591240</td>
<td>0.0306648</td>
<td>1.92807</td>
<td>0.064424</td>
</tr>
<tr>
<td>D(XALC(-3))</td>
<td>0.0684795</td>
<td>0.0195739</td>
<td>3.49773</td>
<td>0.001643</td>
</tr>
<tr>
<td>D(XALC(-4))</td>
<td>0.0573026</td>
<td>0.0165027</td>
<td>3.47236</td>
<td>0.001758</td>
</tr>
<tr>
<td>D(XALC(-5))</td>
<td>0.0362343</td>
<td>0.0163311</td>
<td>2.21872</td>
<td>0.035101</td>
</tr>
<tr>
<td>D(XALC(-6))</td>
<td>0.0724561</td>
<td>0.0077621</td>
<td>9.33449</td>
<td>6.091088</td>
</tr>
<tr>
<td>D(XALC(-7))</td>
<td>0.0243901</td>
<td>0.0067607</td>
<td>3.60760</td>
<td>0.001237</td>
</tr>
<tr>
<td>D(XALC(-8))</td>
<td>0.0010293</td>
<td>0.0066365</td>
<td>1.55105</td>
<td>0.132532</td>
</tr>
<tr>
<td>D(XALC(-9))</td>
<td>-0.0218676</td>
<td>0.0037246</td>
<td>-5.87107</td>
<td>2.973619</td>
</tr>
<tr>
<td>C</td>
<td>21377.114</td>
<td>5481.174</td>
<td>3.90009</td>
<td>0.000576</td>
</tr>
</tbody>
</table>

36
R-squared	0.99847397263359	**Mean dependent var**	-103614.1740526316
Adjusted R-squared	0.997907988423696	**S.D. dependent var**	595912.4476834786
S.E. of regression	27256.14653946271	**Akaike info criterion**	23.5011438125837
Sum squared resid	20058233152.87795	**Schwarz criterion**	23.97518191145153
Log likelihood	-435.521732439084	**Hannan-Quinn criter.**	23.6698029448537
F-statistic	1765.933014458256	**Durbin-Watson stat**	2.344740663252902
Prob(F-statistic)	2.569455667646483	e-35	
Estacionariedad de PROD

Null Hypothesis: D(PROD) has a unit root
Exogenous: Constant
Lag Length: 2 (Automatic - based on SIC, maxlag=9)

<table>
<thead>
<tr>
<th>Test statistic</th>
<th>Prob.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augmented Dickey-Fuller test statistic</td>
<td>26.0959180260276 0.0001</td>
</tr>
</tbody>
</table>

Test critical values:
1% level: -3.58850885506497
5% level: -2.92973420546101
10% level: -2.60306417233597

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(PROD,2)
Method: Least Squares
Date: 07/02/19 Time: 01:23
Sample (adjusted): 5 48
Included observations: 44 after adjustments

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(PROD(-1))</td>
<td>-3.732178298412795</td>
<td>0.1430177047111501</td>
<td>-26.0959180260276</td>
<td>9.829155217480728e-27</td>
</tr>
<tr>
<td>D(PROD(-1),2)</td>
<td>1.806208420558453</td>
<td>0.1020743273066122</td>
<td>17.69503133861407</td>
<td>1.606528459866893e-20</td>
</tr>
<tr>
<td>D(PROD(-2),2)</td>
<td>0.8989320345825225</td>
<td>0.0585059969661406</td>
<td>15.36478448701189</td>
<td>2.244173933562073e-18</td>
</tr>
<tr>
<td>C</td>
<td>1585.255052828862</td>
<td>1306.600419736924</td>
<td>1.21326690921165</td>
<td>0.232143948992225</td>
</tr>
</tbody>
</table>

R-squared Mean dependent var Mean dependent var
Adjusted R-squared S.D. dependent var
S.E. of regressions Akaike info criterion
Sum squared resid Schwarz criterion
Log likelihood Hannan-Quinn criter.
F-statistic Durbin-Watson stat
Prob(F-statistic) 5.661171483039061e-29

Estacionariedad de PDT

Null Hypothesis: D(PDT) has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=9)

<table>
<thead>
<tr>
<th>t-Statistic</th>
<th>Prob.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test critical values:</td>
<td></td>
</tr>
<tr>
<td>1% level</td>
<td>19.37771588388049</td>
</tr>
<tr>
<td>5% level</td>
<td>3.581151792529329</td>
</tr>
<tr>
<td>10% level</td>
<td>2.9266216321652</td>
</tr>
<tr>
<td>2.6014211869038</td>
<td></td>
</tr>
</tbody>
</table>

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(PDT,2)
Method: Least Squares
Date: 07/02/19 Time: 01:24
Sample (adjusted): 3 48
Included observations: 46 after adjustments

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(PDT(1)) - 1</td>
<td>1.788547157450738</td>
<td>0.0922991733478018</td>
<td>4</td>
<td>19.37771588388049</td>
</tr>
<tr>
<td>C</td>
<td>16.1957552744584</td>
<td>52.13561753899923</td>
<td>0.310646656526959</td>
<td>0.310646656526959</td>
</tr>
</tbody>
</table>

R-squared	Mean dependent var	0.895112198128908	2.672618231243961	
Adjusted R-squared	S.D. dependent var	0.892728384450019	6	1079.5235789403
S.E. of regression	Akaike info criterion	353.569282139437	14.6156407360228	
Sum squared resid	Schwarz criterion	5500494.439994259	14.69604688367569	
Log likelihood	Hannan-Quinn criter.	-334.1804369390519	14.64632421543677	
F-statistic	Durbin-Watson stat	375.4958728763938	1.893142646288607	
Prob(F-statistic)	e-23	3.602944553714668	3.602944553714668	

|
Estacionariedad de TC

Null Hypothesis: D(TC) has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=9)

<table>
<thead>
<tr>
<th>t-Statistic</th>
<th>Prob.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augmented Dickey-Fuller test statistic</td>
<td>-10.6443130034988 1</td>
</tr>
</tbody>
</table>

Test critical values:
1% level | -3.58115179265232 9 |
5% level | -2.92662166323165 2 |
10% level | -2.60142411869903 8 |

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(TC,2)
Method: Least Squares
Date: 07/02/19 Time: 01:25
Sample (adjusted): 3 48
Included observations: 46 after adjustments

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(TC(-1))</td>
<td>-1.441817254190412</td>
<td>0.135454233045992</td>
<td>-10.6443130034988 1</td>
<td>9.402458525538716e-14</td>
</tr>
<tr>
<td>C</td>
<td>0.005018054250285508</td>
<td>0.02349614930007543</td>
<td>0.2135692187770274</td>
<td>0.8318695602316845</td>
</tr>
</tbody>
</table>

R-squared | 0.7202822086058992 | Mean dependent var | 0.0018044940249173 36 |
Adjusted R-squared | 0.7139249860742151 | S.D. dependent var | 0.2979200905926846 |
S.E. of regression | 0.1593454823753537 | Akaike info criterion | -0.7929793521410286 |
Sum squared resid | 1.117203241125582 | Schwarz criterion | -0.7134732044675896 |
Log likelihood | 20.23852509924366 | Hannan-Quinn criter. | -0.763195872706517 |
F-statistic | 113.3013993164539 | Durbin-Watson stat | 1.980740993378986 |
Prob(F-statistic) | 9.402458525538616e-14 | | |
Test de Causalidad

VAR Granger Causality/Block Exogeneity Wald Tests

| Date: 07/02/19 Time: 01:28 Sample: 1 48 Included observations: 46 |

Dependent variable: X

<table>
<thead>
<tr>
<th>Excluded</th>
<th>Chi-sq</th>
<th>df</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>XALC</td>
<td>8.541016953201324</td>
<td>2</td>
<td>0.0139746755509472</td>
</tr>
<tr>
<td>PROD</td>
<td>6.877597529273556</td>
<td>2</td>
<td>0.0321032257051849</td>
</tr>
<tr>
<td>PDT</td>
<td>13.62438978369993</td>
<td>2</td>
<td>0.00110027526249554</td>
</tr>
<tr>
<td>TC</td>
<td>0.0310357003057521</td>
<td>2</td>
<td>0.9846019312998754</td>
</tr>
<tr>
<td>All</td>
<td>54.1218757127794</td>
<td>8</td>
<td>6.537766440259746e-09</td>
</tr>
</tbody>
</table>

Dependent variable: XALC

<table>
<thead>
<tr>
<th>Excluded</th>
<th>Chi-sq</th>
<th>df</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0.9427710781723292</td>
<td>2</td>
<td>0.6241369028483081</td>
</tr>
<tr>
<td>PROD</td>
<td>1.995092671177559</td>
<td>2</td>
<td>0.3687832021735468</td>
</tr>
<tr>
<td>PDT</td>
<td>0.1289449051345418</td>
<td>2</td>
<td>0.9375619413308216</td>
</tr>
<tr>
<td>TC</td>
<td>0.1601418882410092</td>
<td>2</td>
<td>0.9230508590323168</td>
</tr>
<tr>
<td>All</td>
<td>5.589858912216242</td>
<td>8</td>
<td>0.6930653400893182</td>
</tr>
</tbody>
</table>

Dependent variable: PROD

<table>
<thead>
<tr>
<th>Excluded</th>
<th>Chi-sq</th>
<th>df</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>13.27253989536305</td>
<td>2</td>
<td>0.001311911627678052</td>
</tr>
<tr>
<td>XALC</td>
<td>2.009528686125239</td>
<td>2</td>
<td>0.366139059225926</td>
</tr>
<tr>
<td>PDT</td>
<td>21.11025495620213</td>
<td>2</td>
<td>2.605951810727479e-05</td>
</tr>
<tr>
<td>TC</td>
<td>3.348570366759581</td>
<td>2</td>
<td>0.1874421183469121</td>
</tr>
<tr>
<td>All</td>
<td>61.10422270974412</td>
<td>8</td>
<td>2.829143536250339e-10</td>
</tr>
</tbody>
</table>

Dependent variable: PDT

<table>
<thead>
<tr>
<th>Excluded</th>
<th>Chi-sq</th>
<th>df</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0.1353522584549618</td>
<td>2</td>
<td>0.9345631022421696</td>
</tr>
<tr>
<td>XALC</td>
<td>1.414899598609056</td>
<td>2</td>
<td>0.492899589348559</td>
</tr>
<tr>
<td>PROD</td>
<td>1.02510859861704</td>
<td>2</td>
<td>0.5989637174141629</td>
</tr>
<tr>
<td>TC</td>
<td>3.429260475204265</td>
<td>2</td>
<td>0.1800302768342294</td>
</tr>
<tr>
<td></td>
<td>Chi-sq</td>
<td>df</td>
<td>Prob.</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>All</td>
<td>7.315786950389185</td>
<td>8</td>
<td>0.502976245865957</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excluded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>4.273426896767091</td>
<td>2</td>
<td>0.1180421578527588</td>
</tr>
<tr>
<td>XALC</td>
<td>0.738790730751816</td>
<td>2</td>
<td>0.6911520988155324</td>
</tr>
<tr>
<td>PROD</td>
<td>3.336396830216814</td>
<td>2</td>
<td>0.1885865049598203</td>
</tr>
<tr>
<td>PDT</td>
<td>1.430085208046327</td>
<td>2</td>
<td>0.4891712796882299</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>6.427828174822209</td>
<td>8</td>
<td>0.5994236018020462</td>
</tr>
</tbody>
</table>
Test de Cointegración

<table>
<thead>
<tr>
<th>Hypothesized</th>
<th>Trace</th>
<th>0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of CE(s)</td>
<td>Eigenvalue</td>
<td>Statistic</td>
</tr>
<tr>
<td>None *</td>
<td>0.75075418573</td>
<td>100.963627986</td>
</tr>
<tr>
<td>At most 1</td>
<td>0.39968608070</td>
<td>38.4444231245</td>
</tr>
<tr>
<td>At most 2</td>
<td>0.20447006322</td>
<td>15.4808078456</td>
</tr>
<tr>
<td>At most 3</td>
<td>0.08716145015</td>
<td>5.18720170362</td>
</tr>
<tr>
<td>At most 4</td>
<td>0.02378741146</td>
<td>1.08337050742</td>
</tr>
</tbody>
</table>

Trace test indicates 1 cointegrating eqn(s) at the 0.05 level
* denotes rejection of the hypothesis at the 0.05 level
**MacKinnon-Haug-Michelis (1999) p-values

Unrestricted Cointegrating Coefficients (normalized by $b'S11b=I$):

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>XALC</th>
<th>PROD</th>
<th>PDT</th>
<th>TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0.00030451743</td>
<td>3.85496756891</td>
<td>-</td>
<td>-</td>
<td>0.00030451743</td>
</tr>
<tr>
<td></td>
<td>96859881</td>
<td>2514e-07</td>
<td>9.78589973148</td>
<td>6544e-05</td>
<td>0.000347662763</td>
</tr>
<tr>
<td></td>
<td>36138742</td>
<td>8852e-07</td>
<td>0.00020285376</td>
<td>87669415</td>
<td>0.000363773466</td>
</tr>
<tr>
<td></td>
<td>3.79069582620</td>
<td>-</td>
<td>0.00020285376</td>
<td>649858</td>
<td>3.48164881146</td>
</tr>
<tr>
<td></td>
<td>0.000358509901</td>
<td>-</td>
<td>0.00020285376</td>
<td>649858</td>
<td>3.48164881146</td>
</tr>
<tr>
<td></td>
<td>3.85496756891</td>
<td>-</td>
<td>0.00020285376</td>
<td>649858</td>
<td>3.48164881146</td>
</tr>
</tbody>
</table>
Unrestricted Adjustment Coefficients (alpha):

<table>
<thead>
<tr>
<th></th>
<th>D(X)</th>
<th>D(XALC)</th>
<th>D(PROD)</th>
<th>D(PDT)</th>
<th>D(TC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-2.95255968837</td>
<td>-6.85018607483</td>
<td>-6.00181174429</td>
<td>-0.00041451281</td>
<td>-0.00010550383</td>
</tr>
<tr>
<td></td>
<td>4518e-07</td>
<td>2214e-05</td>
<td>46748</td>
<td>52849898</td>
<td>41793</td>
</tr>
<tr>
<td></td>
<td>3.94769105870</td>
<td>6.61950122475</td>
<td>-0.00041451281</td>
<td>-0.00041451281</td>
<td>3.32189338247</td>
</tr>
<tr>
<td>705e-05</td>
<td>1349e-07</td>
<td>6008e-06</td>
<td>52849898</td>
<td>52849898</td>
<td>0465</td>
</tr>
<tr>
<td></td>
<td>0.00010550383</td>
<td>1.29780374766</td>
<td>3.77569929176</td>
<td>3.77569929176</td>
<td>3994</td>
</tr>
<tr>
<td>14783748</td>
<td>-2.98101215954</td>
<td>3625e-05</td>
<td>2.65537598019</td>
<td>2.65537598019</td>
<td>3994</td>
</tr>
<tr>
<td></td>
<td>3712e-07</td>
<td>7791e-05</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Cointegrating Equation(s):

<table>
<thead>
<tr>
<th></th>
<th>Log likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-1904.60165405</td>
</tr>
<tr>
<td></td>
<td>4161</td>
</tr>
</tbody>
</table>

Normalized cointegrating coefficients (standard error in parentheses)

<table>
<thead>
<tr>
<th>X</th>
<th>XALC</th>
<th>PROD</th>
<th>PDT</th>
<th>TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00120024901</td>
<td>0.32135761227</td>
<td>-1.5651899465</td>
<td>1.07951688816</td>
</tr>
<tr>
<td></td>
<td>4533105</td>
<td>92036</td>
<td>8885</td>
<td>3968</td>
</tr>
<tr>
<td></td>
<td>0.00019398192</td>
<td>0.06083508643</td>
<td>1.07951688816</td>
<td>1739.98018717</td>
</tr>
<tr>
<td></td>
<td>88380314</td>
<td>436468</td>
<td>413662</td>
<td>6476</td>
</tr>
</tbody>
</table>

Adjustment coefficients (standard error in parentheses)

<table>
<thead>
<tr>
<th></th>
<th>D(X)</th>
<th>D(XALC)</th>
<th>D(PROD)</th>
<th>D(PDT)</th>
<th>D(TC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.99031293733</td>
<td>-278.735465658</td>
<td>-3.18380487938</td>
<td>-0.03511391887</td>
<td>-0.01566502663</td>
</tr>
<tr>
<td></td>
<td>36539</td>
<td>7637</td>
<td>5682</td>
<td>870315</td>
<td>340839</td>
</tr>
<tr>
<td></td>
<td>0.19162294574</td>
<td>97.1248344197</td>
<td>0.50382396742</td>
<td>0.01566502663</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14552</td>
<td>0822</td>
<td>53369</td>
<td>3060.47860164</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3376</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1060.47860164</td>
<td>3376</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8885</td>
<td>3376</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1739.98018717</td>
<td>6476</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1739.98018717</td>
<td>6476</td>
</tr>
<tr>
<td>D(TC)</td>
<td>1.42962699631 5323e-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.58304022655 402e-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 Cointegrating Equation(s):

| Log likelihood | -1893.11984641 4702 |

Normalized cointegrating coefficients (standard error in parentheses)

<table>
<thead>
<tr>
<th>X</th>
<th>XALC</th>
<th>PROD</th>
<th>PDT</th>
<th>TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>-1.13025266175 4587</td>
<td>15.3452386138 9639</td>
<td>-16519.3800227 7162</td>
</tr>
<tr>
<td></td>
<td>0.15206185632 10013</td>
<td>2.69734389993 9869</td>
<td>4599.58697078 4111</td>
<td></td>
</tr>
</tbody>
</table>

| 0 | 1 | 1209.42425818 0678 | -14089.1001415 5138 | 16313163.6746 4924 |
| | 153.458774702 7544 | 2722.12308761 3216 | 4641841.14118 1695 |

Adjustment coefficients (standard error in parentheses)

D(X)	-1.18678725823 4455	-0.00131591244 3943688
	0.41326996618 01301	0.00032992403 9757918
D(XALC)	-402.702532153 0148	-0.41486682590 463
	208.965803286 3309	0.16682277357 03274
D(PROD)	-0.87937271407 8724	-0.00232838035 4584744
	0.99319738757 00482	0.00079289501 10090908
D(PDT)	-0.00717485400 8867555	1.47477119334 1968e-05
	2.62547368833 3443e-05	8867555
D(TC)	3.11134096572 2826e-05	2.8054469013 5223e-08
	1.60902691594 6206e-05	1.28452755736 1412e-08

3 Cointegrating Equation(s):

| Log likelihood | -1887.97304334 3702 |

Normalized cointegrating coefficients (standard error in parentheses)

<table>
<thead>
<tr>
<th>X</th>
<th>XALC</th>
<th>PROD</th>
<th>PDT</th>
<th>TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5.13546803104 1998</td>
<td>2774.99056224 6911</td>
</tr>
<tr>
<td></td>
<td>1.92103003962 0478</td>
<td>3858.93163571 5731</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>7826.23284480 7918</td>
<td>- 4332733.14246 0762</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2038.69133778 68</td>
<td>4095287.59914 6216</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>- 18.1204675184 2588</td>
<td>17070.8472874 2531</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.49649772094 7021</td>
<td>5014.92107627 7364</td>
</tr>
</tbody>
</table>

Adjustment coefficients (standard error in parentheses)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D(X)</td>
<td>- 1.27389299032 4615</td>
<td>- 0.00113798089 1976193</td>
<td>- 0.20884536162 41536</td>
</tr>
<tr>
<td></td>
<td>0.41710382324 21692</td>
<td>0.00037290867 38884898</td>
<td>0.14541407682 54901</td>
</tr>
<tr>
<td>D(XALC)</td>
<td>- 450.451605080 2358</td>
<td>- 0.31732942570 05086</td>
<td>- 23.9648995189 5354</td>
</tr>
<tr>
<td></td>
<td>210.370457708 8478</td>
<td>0.18808019499 73349</td>
<td>73.3410345206 2335</td>
</tr>
<tr>
<td>D(PROD)</td>
<td>- 0.68354218200 07668</td>
<td>- 0.00272840489 5555257</td>
<td>- 1.91489538040 3042</td>
</tr>
<tr>
<td></td>
<td>1.00421493308 2365</td>
<td>0.00089781113 98833696</td>
<td>0.35009745605 6548</td>
</tr>
<tr>
<td>D(PDT)</td>
<td>- 0.00748409087 0855992</td>
<td>- 1.51962280354 8865e-05</td>
<td>0.01899839322 740081</td>
</tr>
<tr>
<td></td>
<td>0.03150113745 22013</td>
<td>2.81633654229 6846e-05</td>
<td>0.01098217893 55978</td>
</tr>
<tr>
<td>D(TC)</td>
<td>2.71902682582 9882e-05</td>
<td>3.60682781493 0133e-08</td>
<td>6.22990603461 4894e-07</td>
</tr>
<tr>
<td></td>
<td>1.61601413259 1e-05</td>
<td>1.44478581492 9017e-08</td>
<td>5.63387794916 5434e-06</td>
</tr>
</tbody>
</table>

4 Cointegrating Equation(s):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Log likelihood</td>
<td>- 1885.92112774 5605</td>
</tr>
</tbody>
</table>

Normalized cointegrating coefficients (standard error in parentheses)

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>XALC</th>
<th>PROD</th>
<th>PDT</th>
<th>TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>- 8083.59597777 1688</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6081.06132348 6032</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12215286.6512 5602</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8843646.83258 2059</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>- 21243.608643 9303</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20690.8899665 2633</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>- 2114.42978018 4099</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1173.84535522 5595</td>
</tr>
<tr>
<td>Adjustment coefficients (standard error in parentheses)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D(X)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1.28071798969 153</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.00117511797 4414504</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.20770094350 74263</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.49197228663 2831</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.41731981501 83037</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00039534128 14495427</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.14529878878 85904</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5374224266 3306</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D(XALC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-458.638157375 5221</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.36187516865 68033</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-22.5921757637 4347</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>350.000915372 7988</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209.310199019 5313</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.19828668403 2032</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72.8758072446 2545</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1272.66507722 6557</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D(PROD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.68387942288 30865</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.00273023993 4912122</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1.91483883174 2056</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.8595176319 3067</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00592910534 3826</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00095295091 97558214</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.35023565944 7989</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.11633283296 1408</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D(PDT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00596203994 9731214</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2.34782112994 1512e-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01925361122 158263</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.11633283296 1408</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.03122664962 296455</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.95820692740 8235e-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01087222366 362699</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.18986684184 57165</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D(TC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.59611171277 5637e-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.93800596733 6148e-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.29095065361 8425e-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00014426135 91802087</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.57671183629 2513e-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.49367285090 2621e-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.48965833486 4546e-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.58685291160 6056e-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

47
Estimación del modelo

Dependent Variable: X
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 07/02/19 Time: 01:15
Sample: 1 48
Included observations: 48
Convergence achieved after 55 iterations
Coefficient covariance computed using outer product of gradients

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROD</td>
<td>0.234843</td>
<td>0.024106</td>
<td>9.742222</td>
<td>0.0000</td>
</tr>
<tr>
<td>PDT</td>
<td>-2.948303</td>
<td>0.640607</td>
<td>-4.602356</td>
<td>0.0000</td>
</tr>
<tr>
<td>XALC</td>
<td>-0.000441</td>
<td>0.000193</td>
<td>-2.287480</td>
<td>0.0275</td>
</tr>
<tr>
<td>TC</td>
<td>3337.021</td>
<td>1138.591</td>
<td>2.930833</td>
<td>0.0056</td>
</tr>
<tr>
<td>C</td>
<td>8289.827</td>
<td>4290.305</td>
<td>1.932223</td>
<td>0.0604</td>
</tr>
<tr>
<td>AR(2)</td>
<td>-0.404607</td>
<td>0.122696</td>
<td>-3.297649</td>
<td>0.0021</td>
</tr>
<tr>
<td>AR(10)</td>
<td>-0.580805</td>
<td>0.133478</td>
<td>-4.351320</td>
<td>0.0001</td>
</tr>
<tr>
<td>SIGMASQ</td>
<td>8171344.</td>
<td>2379104.</td>
<td>3.434630</td>
<td>0.0014</td>
</tr>
</tbody>
</table>

R-squared 0.938037 Mean dependent var 30208.70
Adjusted R-squared 0.927194 S.D. dependent var 11605.20
S.E. of regression 3131.391 Akaike info criterion 19.28060
Sum squared resid 3.92E+08 Schwarz criterion 19.59246
Log likelihood -454.7343 Hannan-Quinn criter. 19.39845
F-statistic 86.50685 Durbin-Watson stat 1.902215
Prob(F-statistic) 0.000000
Prueba de Heterocedasticidad

<table>
<thead>
<tr>
<th>Heteroskedasticity Test: Breusch-Pagan-Godfrey</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-statistic</td>
</tr>
<tr>
<td>Obs*R-squared</td>
</tr>
<tr>
<td>Scaled explained SS</td>
</tr>
</tbody>
</table>

Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 07/02/19 Time: 01:13
Sample: 1 48
Included observations: 48

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-15460071.83243148</td>
<td>15971756.41776293</td>
<td>-0.967963161223622</td>
<td>0.338475867987959</td>
</tr>
<tr>
<td>PROD</td>
<td>77.08165689366578</td>
<td>69.33471897552125</td>
<td>1.111732448513703</td>
<td>0.272430549776163</td>
</tr>
<tr>
<td>PDT</td>
<td>-2498.69520791422</td>
<td>2599.532176034178</td>
<td>-0.961209571072209</td>
<td>0.341821026592840</td>
</tr>
<tr>
<td>XALC</td>
<td>77.08165689366578</td>
<td>69.33471897552125</td>
<td>1.111732448513703</td>
<td>0.272430549776163</td>
</tr>
<tr>
<td>TC</td>
<td>-15460071.83243148</td>
<td>15971756.41776293</td>
<td>-0.967963161223622</td>
<td>0.338475867987959</td>
</tr>
</tbody>
</table>

R-squared | 0.1295767261257895 | Mean dependent var | 8171343.773079606 |
Adjusted R-squared | 0.0486071192537699 | S.D. dependent var | 9180234.500502722 |
S.E. of regression | 8954342.946885276 | Akaike info criterion | 34.9515079405675 |
Sum squared resid | 3447751077248666 | Schwarz criterion | 35.14642471253708 |
Log likelihood | -833.383619057362 | Hannan-Quinn criter. | 35.0251672734076 |
F-statistic | 1.600313143802196 | Durbin-Watson stat | 2.418368757889601 |
Prob(F-statistic) | 0.191590836995920 | Durbin-Watson stat | 2.418368757889601 |