

FACULTAD DE INGENIERÍA

Carrera de Ingeniería Civil

DISEÑO ESTRUCTURAL EN CONCRETO ARMADO DEL PABELLÓN N° 3 DE LA INSTITUCIÓN EDUCATIVA RICARDO PALMA SORIANO EN PERENÉ, CHANCHAMAYO – JUNÍN

Trabajo de Investigación para optar el Grado Académico de Bachiller en Ingeniería Civil

ISAAC ARMANDO ALVAREZ CASTILLO 0000-0003-1069-2170

ELDER BARBOZA ROJAS 0000-0002-6173-2067

NEFTALI BEATRIZ CRISPÍN MANCILLA 0000-0001-9964-2879

JHONEL HAESSLER ESTRADA CARLOS 0000-0002-2579-4340

ASESOR:

Ing. SAMIR AUGUSTO AREVALO VIDAL 0000-0002-6559-0334

Lima – Perú 2020

INDICE

RE	UMEN	1
1.	Descripción del Problema	2
	1.1 Situación Problemática.	2
2.	Objetivos de la Investigación.	4
	2.1 Objetivo General.	4
	2.2 Objetivos Específicos.	4
3.	Alcance del proyecto	5
4.	Evaluación del entorno	6
5.	Normativa legal vigente y estándares Nacionales e Internacionales aplicables al diseño	10
6.	Propuesta de solución	13
7.	Memoria de cálculo	19
	7.1.1 Zonificación 7.1.2 Perfil de suelo y parámetros de sitio 7.1.3 Factor de amplificación sísmica 7.1.4 Categoría de edificaciones y Factor de Uso (U) 7.1.5 Coeficiente básico de reducción de las Fuerzas sísmicas (RO) 7.2 Resultado de análisis en ETABS 7.3 Diseño de los elementos estructurales 7.3.1 Diseño de Loza Maciza 7.3.2 Diseño de Viga Principal 7.3.3 Diseño de Columna rectangular 7.3.4 Diseño de Columna L 7.3.5 Diseño de Zapata Aislada 7.3.6 Diseño de Escalera	19 19 19 20 20 20 23 23 29 38 46 60 65 74
8.	Evaluación de impactos (Matriz de riesgo)	82
9.	Modelación de la información de la infraestructura	96
10	Análisis de resultados y conclusiones	97
11	Recomendaciones	97
12	Referencias	98
13	ANEXO	99

ÍNDICE DE TABLAS

Tabla 1. Total de instituciones educativas diseñadas antes y después de 1997 (Ast	orga &
Aguilar, 2006).	3
Tabla 2. Periodos y Frecuencias	21
Tabla 3. Distorsiones máximas en el eje X	21
Tabla 4. Distorsiones máximas en el eje Y	22
Tabla 5. Resultados de cortante por entrepiso para el análisis estático	22
Tabla 6. Resultados de cortante por piso para el eje X	22
Tabla 7. Resultados de cortante por piso para el eje Y	22
Tabla 8. Verificación entre la cortante estática y dinámica en el eje X.	23
Tabla 9. Verificación entre la cortante estática y dinámica en el eje Y.	23
Tabla 10 Diseño por flexión, Eje I, Piso 1 M- y M+	32
Tabla 11 Diseño por fuerza cortante para la viga del piso 1 - eje I	36
Tabla 12. Distribución de estribos para la viga del piso 1 - eje I	37

ÍNDICE DE ILUSTRACIONES

Ilustración 1. Modelo de edificación en ETABS	20
Ilustración 2. Espectro de respuesta	21
Ilustración 3. Gráfico de la fuerza cortante en la escalera	75
Ilustración 4. Gráfico de la fuerza cortante en la escalera	76
Ilustración 5. Gráfico de la fuerza cortante en la escalera	76
Ilustración 6. Gráfico de la fuerza cortante en la escalera	76
Ilustración 7. Gráfico de momentos en la escalera	77
Ilustración 8. Distribución de área de acero en la escalera	77
Ilustración 9. Gráfico de diagrama de cortantes	78
Ilustración 10. Fuerza cortante en la escalera	79
Ilustración 11. Fuerza cortante en la escalera	79
Ilustración 12. Fuerza cortante en la escalera	79
Ilustración 13. Fuerza cortante en la escalera	79
Ilustración 14.Grafica de momentos en la escalera	80
Ilustración 15. Grafica de distribución de áreas de acero	80
Ilustración 16. Grafica tridimensional de la estructuración de la Institución educar	tiva.
	96
Ilustración 17. Modelo tridimensional vista posterior de la Institución educativa	96
Ilustración 18. Modelo tridimensional de vista frontal de la Institución educativa	96

RESUMEN

Los factores que afectan la seguridad y calidad de la educación en la zona de Perené son la precariedad en las infraestructuras que inhabilitan los espacios de estudios para llevar a cabo las actividades pedagógicas de manera aceptable. Por tal motivo el objetivo es analizar y diseñar la componente estructural del pabellón N.º 3 del colegio Ricardo Palma Soriano bajo los lineamientos del Reglamento Nacional de Edificaciones para mejorar la seguridad y el desempeño de la estructura ante posibles eventos naturales. El proyecto cuenta con un área de 271 m2, y está compuesta por vigas, columnas, losas macizas y zapatas aisladas y conectadas que son diseñados bajo los lineamientos de la norma RNE E020, E030, E050, E060.

Se plantea una metodología en donde se considera la evaluación del tipo de suelo considerando revisión de documentos de investigación de la zona, el análisis de la estructura en el programa ETABS con los diseños respectivos de los elementos estructurales, el cronograma de ejecución de obra usando el programa MS PROJECT, los análisis de costos y presupuestos usando el software S10 y finalmente la elaboración de un prototipo en el software REVIT. Todas las actividades dentro de la metodología necesaria para el diseño se llevarán a cabo con su respectiva normativa.

Del resultado del análisis estructural, se obtuvieron derivas y rigidices que garantizan la estabilidad y desempeño de la estructura. El diseño estructural se realizó con éxito sin ningún problema o dificultad, mostrando el cumplimiento de las derivas, rigideces y estabilidad estructural requerida según la normativa E.030. Asimismo, el presupuesto final calculado del proyecto es de S/511,115.48 y el tiempo de ejecución será de 180 días, iniciando el 22 de marzo del 2021 y culminando el 23 de setiembre del mismo año.

Finalmente, se puede afirmar que la infraestructura educativa analizada cumple con el propósito de seguridad y confort para una enseñanza pedagógica correcta para cada nivel y modalidad educativa. Asimismo, se garantiza una correcta ejecución del proyecto cumplimiento con los más exigentes estándares de calidad establecidas para una infraestructura educativa.

1. Descripción del Problema

1.1 Situación Problemática.

Los estudiantes invierten una gran parte de su niñez y juventud en las infraestructuras educativas, por tal motivo, estos deben ser un lugar atractivo, cómodo y con espacios seguros ante cualquier tipo de eventos naturales (Castro & Moralez, 2015). Sin embargo, en muchos países, los espacios educativos se encuentran en condiciones precarias, lo que ha ocasionado la pérdida de vidas humanas ante la ocurrencia de eventos sísmicos. Por ejemplo, el terremoto y tsunami de Sulawesi ocurrido en Indonesia en el año 2018 causó graves daños a más de 1500 escuelas, afectando a 184000 alumnos (UNICEF, 2018).

Asimismo, el ciclón Idai ocurrido en África en el año 2019 causó daño a miles de aulas y afectó a la educación de medio millón de niños. Ayala et al. (2020) menciona que la destrucción de las infraestructuras educativas sucedió a causa de un diseño inapropiado, antigüedad de las estructuras y el bajo o nulo mantenimiento de estos.

El 58% de los estudiantes del Perú desarrollan sus labores académicas en locales educativos con alto riesgo de colapso (MINEDU, 2017). Además, el MEF (2019) menciona que el 45% de las infraestructuras educativas peruanas se encuentran en riesgo de colapso debido a la antigüedad y normativa de diseño antigua. De acuerdo con INEI (2018), el 48% de locales escolares tienen más de 25 años de antigüedad. Asimismo, Astorga & Aguilar (2006) indican que existe un total de 40 mil instituciones educativas diseñadas con la norma de diseño sismo resistente del 1997 en el que se contempla un diseño poco rígido (ver tabla 1).

Tabla 1. Total de instituciones educativas diseñadas antes y después de 1997 (Astorga &
Aguilar, 2006).

Región	Número de centros educativos construidos antes de 1997	Números de centros educativos construidos después de 1997
Costa	10262	340
Sierra	22954	411
Selva	7101	357
TOTAL	40317	1108

En el aspecto regional, según Astorga & Aguilar (2006) las infraestructuras educativas en la selva no están diseñadas para funcionar como un refugio Post-Sismo debido a que el 95% de total de infraestructuras están diseñadas con la norma sismo resistente del 1997. Además, de las 383 000 aulas existentes en los locales educativos, el 32,2% requiere mantenimiento y el 13,5% necesita una reconstrucción (MINEDU, 2018). Por lo que se evidencia que las infraestructuras educativas no garantizan la seguridad de los estudiantes ante los posibles eventos naturales.

Teniendo en cuenta el impacto de las amenazas naturales en las componentes estructurales de los centros educativos, es necesario desarrollar estrategias efectivas para garantizar la seguridad de los estudiantes, reducir el impacto físico de las estructuras y minimizar la interrupción del servicio educativo en caso de desastre. Por ello, la presente investigación pretende desarrollar el análisis y diseño de la componente estructural del pabellón N.º 3 del colegio Ricardo Palma Soriano en acorde con las normativas vigentes relacionadas a una infraestructura educativa de calidad y de mayor seguridad.

2. Objetivos de la Investigación.

2.1 Objetivo General.

Analizar y diseñar la componente estructural del pabellón N.º 3 del colegio Ricardo Palma Soriano bajo los lineamientos del Reglamento Nacional de Edificaciones para mejorar la seguridad y el desempeño de la estructura ante posibles eventos naturales.

2.2 Objetivos Específicos.

- Realizar el análisis sísmico de la estructura cumpliendo con los lineamientos propuestos por la Norma E030 mediante el software ETABS para determinar las cargas actuantes de los elementos.
- Reestructurar la edificación para cumplir con los parámetros de diseño exigidos por el Reglamento Nacional de Edificaciones
- Realizar el modelo tridimensional con el software REVIT para obtener los metrados y la documentación estructural de la infraestructura.
- Determinar los costos unitarios usando el software S10 para obtener el presupuesto de la edificación y el cronograma de ejecución usando el software Ms Project.

3. Alcance del proyecto

Delimitación geográfica

El presente estudio se desarrolló en la Institución Educativa Integrado Técnico Industrial Ricardo Palma Soriano, ubicada en la AA.HH. Santa Rosa del distrito de Perené, provincia de Chanchamayo y departamento de Junín.

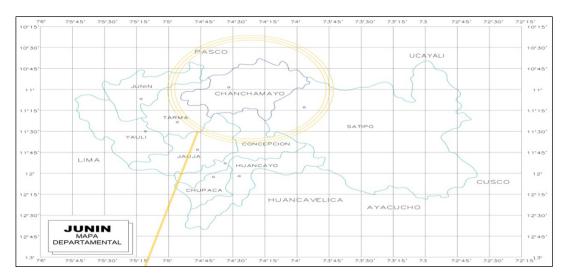


Figura 1. Ubicación macro regional del distrito de Chanchamayo (Castillo, 2007)

Figura 2. Ubicación del proyecto

Fuente: Google Earth

Delimitación temporal

El desarrollo de esta propuesta de investigación se llevó a cabo desde el mes de setiembre del 2020 hasta febrero del año 2021.

Delimitación normativa

El análisis y diseño estructural de la edificación, se realizó acorde a la normativa vigente en el Perú, el Reglamento Nacional de Edificaciones (RNE).

Delimitación Temática

El presente trabajo de investigación se limita a desarrollar los siguientes tópicos:

En primer lugar, se priorizó el diseño de los elementos estructurales de una infraestructura de 3 niveles del colegio Ricardo Palma Soriano. Esto incluye la elaboración de la documentación estructural (planos) respectiva de la infraestructura.

En segundo lugar, se realizó el metrado y presupuesto de la infraestructura utilizando los programas S10 Y Revit. Esto incluye la realización del modelo de información de la infraestructura a un nivel de detalle de categoría 300.

Finalmente, se realizó la elaboración de herramientas de gestión de proyecto como la matriz riesgos y el cronograma de ejecución.

4. Evaluación del entorno

FACTOR ECONÓMICO

El Instituto Peruano de Economía (2019) menciona que la región de Junín se encuentra dentro de las regiones menos competitivas a nivel nacional, en los pilares de educación, salud y laboral. Un factor determinante es la falta de inversión por parte del gobierno regional en promover la construcción de infraestructuras educativas más seguras y de calidad.

Por otra parte, la situación actual que vive el país por el SAR-COV2 genera un impacto negativo en el proyecto por el alza de precios de materiales e insumos, teniendo como consecuencia un incremento en el presupuesto final.

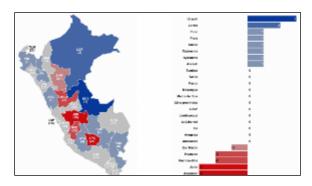


Figura 3. Factor Económico

FACTOR TECNOLÓGICO

Los avances tecnológicos de modelación de la información como Revit, archiCAD entre otros, facilitan realizar la documentación y gestión de manera colaborativa.

Asimismo, en el aspecto de análisis y diseño, los softwares como el Etabs, Safe, Sap 2000 permiten realizar el diseño sísmico y estático de la estructura, y diseñar los elementos estructurales a partir de los datos obtenidos del programa. Por otro lado, los programas S10 y Ms Project nos facilitan la elaboración del presupuesto y cronograma que es realizado con el software S10.

FACTOR POLÍTICO

La existencia de normativas y regulaciones de construcción, como el Reglamento Nacional de Edificaciones son un buen punto de apoyo, ya que proporcionan criterios mínimos para el diseño y ejecución de las edificaciones. También, es de gran importancia considerar la norma técnica de infraestructura educativa (PRONIED) debido a que

establece criterios y herramientas de diseño para el tratamiento de las infraestructuras educativas con el fin de mejorar la calidad educativa. Por otra parte, la deficiente gestión de gobiernos regionales municipales y locales muestra infraestructuras educativas inadecuadas y en malas condiciones.

FACTOR SOCIAL

En la ejecución del proyecto, el uso de equipos y maquinarias podría afectar la calidad del aire generado inconformidades sociales en la población. Por ejemplo, las actividades como excavación, carguío y transportes de materiales generan polvo en las viviendas aledañas al proyecto generando incomodidad en los vecinos. Por otra parte, el horario de trabajo establecido en el proyecto debe obedecer a las disposiciones propuestas por las entidades reguladoras.

FACTOR SALUD

Hoy en día, el Perú y el mundo atraviesa una crisis sanitaria por el SAR-COV2, lo cual ha causado la muerte de aproximante 43 mil personas en nuestro país y 2 millones de personas a nivel mundial. Esto ha causado un impacto negativo en los diferentes sectores, entre ellas la industria de la construcción, por lo cual se han tomado nuevas medidas preventivas como el PLAN COVID en los expedientes de todos los proyectos para garantizar la seguridad y protección de salud de sus trabajadores.

Aparte de ello, el lugar de estudio está ubicada en una zona tropical, por lo cual los insectos son los agentes de transmisión de muchas enfermedades como el dengue, chikungunya, sika, etc. Siendo este otro punto de enfoque para tener en cuenta en la seguridad y salud ocupacional de los trabajadores durante el desarrollo del proyecto.

FACTOR SEGURIDAD

La zona de estudio donde se ejecutará el proyecto presenta un clima tropical siendo un factor negativo en el personal de obra, ya que el uso de los EPPs genera incomodidad y molestia, por lo cual existe mayor probabilidad de ocurrencia de accidentes. Por ello es necesario que el personal de seguridad supervise el área de trabajo y realice charlas y capacitaciones de acuerdo con los cronogramas establecidos.

El incremento de la delincuencia en el distrito de Perené es perjudicial para el proyecto, puesto que conlleva el incremento de personal en instalaciones de equipos de seguridad para proteger los equipos, materiales e insumos de la obra. Por otra parte, la existencia de sindicatos en el proyecto, causan desorden, caos y violencia.

FACTOR AMBIENTAL

En toda construcción, siempre se realiza la apertura, desbroce y retiro de vegetación para utilizar el terreno, dando como resultado perturbaciones internas de la flora y fauna del lugar donde se ejecutará el proyecto. Asimismo, el uso de materiales como cemento, pinturas, equipos y maquinarias alteran la calidad del aire.

Por ello, el alcance del proyecto para mitigar estos posibles impactos que se suscite durante la fase constructiva es tomar acciones controladas y planificadas mediante la gestión de impacto ambiental.

5. Normativa legal vigente y estándares Nacionales e Internacionales aplicables al diseño

El proyecto de edificación ubicada en el distrito de Perené se rigió bajo las normativas vigentes y estándares, las cuales involucran análisis y criterios de diseño que permiten que la estructura mejore su seguridad y desempeño frente a los posibles eventos externos. A continuación, se detalla las normativas empleadas para el análisis, modelamiento y diseño del pabellón N.º 03 del colegio Ricardo Palma Soriano.

NTE E.030 "DISEÑO SISMORRESISTENTE"

Esta norma establece criterios mínimos para el diseño de las edificaciones, con la finalidad de evitar pérdida de vidas humanas, asegurar la continuidad de los servicios básicos y minimizar los daños de propiedad. Las consideraciones empleadas en el presente trabajo según la normativa serán las siguientes:

- La zonificación del proyecto, con el cual se determinará el factor de zona "Z", el perfil de suelo y en consecuencia los periodos "Tp" y "Tl" y el factor de amplificación sísmica "C".
- La categoría, sistema estructural y regularidad de las edificaciones. El primero, nos permitirá conocer el factor de uso o importancia "U" de la edificación. El segundo, el tipo de sistema estructural de la edificación (pórticos, muros estructurales, dual y muros de ductilidad limitada). Finalmente, se tendrá en cuenta la regularidad e irregularidad en planta y altura de la estructura para castigar el coeficiente R de reducción de fuerzas sísmicas.

Asimismo, finalizado el análisis sísmico estático y dinámico en el programa ETABS, la norma nos ayudará a verificar si la estructura cumple con los requerimientos establecidos, tales como el máximo desplazamiento relativo, distorsión y la fuerza cortante mínima.

NTE E.050 "SUELOS Y CIMENTACIONES"

Esta norma establece requisitos para la ejecución de estudios de mecánica de suelos con fines de cimentaciones y otras obras indican en la norma.

De acuerdo con el tipo de suelo donde se cimentará la edificación se podrá determinar la profundidad de desplante, el esfuerzo admisible del suelo y los asentamientos diferenciales. Los dos primeros nos ayudarán en el diseño de las zapatas y el último en controlar que estos asentamientos no excedan los límites de distorsión angular que proporciona la norma.

NTE E.060 "CONCRETO ARMADO"

Esta Norma aporta requisitos y exigencias mínimas para el análisis, el diseño, los materiales, la construcción, el control de calidad y la supervisión de estructuras de concreto armado, pre esforzado y simple. Para el presente trabajo se tendrá en consideración los siguientes aspectos:

- Detalle de refuerzo Permitirá realizar un buen detallado de acero de refuerzo, en base a los diámetros mínimos de doblado, los límites de espaciamiento de refuerzo, recubrimientos, etc.
- Requisitos de resistencia y servicio Los elementos estructurales se diseñarán para obtener en todas sus secciones resistencias de diseño (←Rn) por lo menos iguales a las resistencias requeridas (Ru).
- Diseño de los elementos estructurales tales como viga, columna, zapata, etc. Bajo los lineamientos descritos en esta norma.
- Longitud de desarrollo y empalmes de refuerzo.

ACI-318SUSR-14 "REQUISITOS DE REGLAMENTO PARA CONCRETO ESTRUCTURAL"

Capítulo 6: Análisis estructural - Permitirá realizar el análisis estructural acorde a las disposiciones de la estructura.

Capítulo 8: Disposiciones generales para el diseño de losa en dos direcciones - Permite realizar el diseño y detallado de losas en dos direcciones.

Capítulo 9: Disposiciones generales para el diseño de vigas - Permite realizar el diseño y detallado de acero de vigas.

Capítulo 10: Disposiciones generales para el diseño de columnas - Permite realizar el diseño y detallado de acero de las columnas.

Capítulo 20: (20.6.1.3.2) Recubrimiento especificado para elementos de concreto pre esforzado construidos en sitio - Permitirá especificar los recubrimientos mínimos del diseño de los elementos estructurales.

Capítulo 21: Factores de reducción de resistencia - Permitirá tener en cuenta la probabilidad de existencia de miembros con una resistencia baja debida a variaciones en la resistencia de los materiales y las dimensiones.

NORMA TÉCNICA METRADOS PARA OBRAS DE EDIFICACIÓN Y HABILITACIONES URBANAS

Esta norma aporta la disposición de un orden y coherencia de unidades para el metrado de los recursos del proyecto.

6. Propuesta de solución

ESTRUCTURACIÓN

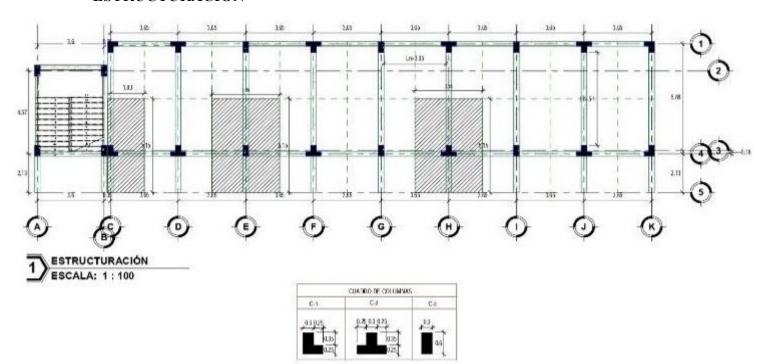


Figura 4. Estructuración del Proyecto

La estructuración consiste en definir la ubicación y las características de todos los elementos estructurales, tales como las losas aligeradas, losas macizas, vigas, columnas y placas de tal forma que el edificio tenga un buen comportamiento ante solicitaciones de cargas de gravedad y de sismo (Blanco Blasco). Para ello es necesario tener en cuenta ciertos parámetros de estructuración para lograr una estructura sismorresistente:

- Simplicidad y simetría
- Resistencia y ductilidad
- Hiperestaticidad y monolitismo
- Uniformidad y continuidad de la estructura
- Rigidez lateral
- Existencia de diafragmas rígidos
- Influencia de los elementos no estructurales.

PREDIMENSIONAMIENTO DE LOS ELEMENTOS ESTRUCTURALES

Predimensionamiento de losa

Para el Predimensionamiento de la losa maciza se usó la recomendación de Blanco (1990) donde el espesor del paño se determina dividiendo el perímetro entre180.

$$H = \frac{Perimetro del paño}{180}$$

$$H = \frac{(2x3.35 + 2x5.8)}{180} = 0.101 \, m \approx 12 \, cm$$

Peralte efectivo

$$d = 0.12 - 0.03 = 0.09 m$$

Predimensionamiento de Vigas

Las vigas se dimensionarán considerando un peralte de orden de 1/10 a 1/12 de la luz libre. Según Blanco (1990) el ancho de la viga puede variar entre 0.30 a 0.50 m de la altura, Además, para elementos sismo-resistentes la Norma E. 060 indica que la viga debe tener un ancho mínimo de 25cm, con la finalidad de evitar problemas de cangrejeras y congestionamiento de acero (Cisneros, 2017)

Vigas Principales

a. Predimensionamiento del peralte

Dado que la estructura se encuentra dentro de la categoría de edificaciones importantes se realizará el predimensionamiento con un peralte de orden de 1/10. Asimismo, la luz más crítica para las vigas en la dirección "Y", se encuentra en cualquiera de los ejes C, D, E, ..., K entre los ejes 2-3, siendo $L_n = 5.1 \, m$.

$$h = \frac{5.1}{10} = 0.51 \approx 55 \ cm$$

b. Predimensionamiento del base

$$B1 = 0.5 \times 0.55 = 0.27 m \approx 30 \ cm$$

$$B2 = 0.3x0.55 = 0.165 m$$

Como el ancho mínimo es 25 cm, tomaremos el valor de 30 cm.

Vigas Secundarias

a. Predimensionamiento del peralte

De acuerdo al plano de estructuración, la luz más crítica para las vigas secundarias en la dirección "X", se encuentra en cualquiera de los ejes C, D, E, ..., K entre los ejes 2-3, siendo $L_n=3.1\ m$.

$$h = \frac{3.1}{10} = 0.31 \approx 35 \ cm$$

b. Predimensionamiento del base

$$B2 = 0.5x0.35 = 0.175 m \approx 25 cm$$

$$B2 = 0.3x0.35 = 0.105 m$$

Tomaremos un ancho mínimo de 25 cm.

Tabla 2. Cuadro Resumen

Viga	B (cm)	H(cm)
Principal	30	55
Secundaria	25	35

Predimensionamiento de Columnas

Las columnas al ser sometidas a cargas axiales y momento flector tienen que ser dimensionadas considerando los dos efectos simultáneamente, tratando de evaluar cuál de los dos es el que gobierna en forma más influyente en dimensionamiento. En base a todo lo indicado se puede recomendar el siguiente criterio de dimensionamiento:

Para el Predimensionamiento de las columnas, se seguirá los lineamientos de la normativa de concreto armado 0 E060

$$Ac = \frac{Pservicio}{\propto f'c}$$

Donde:

 $\propto = 0.45$ (Columna centrada)

 α = 0.35 (Columna esquinada y excéntricas)

$$f'c = 280 \, kg/cm2$$

Además:

 $Pservicio = P(uso) x A(tributaria) x N^{o} pisos$

La edificación corresponde a la categoría A, ya que es una institución educativa, por lo tanto, la carga P = 1500 kg/m2

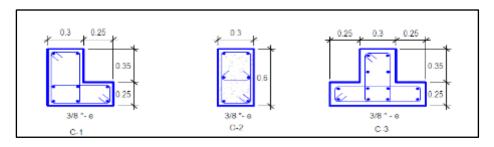
Tabla 3. Cuadro de Categoría

Categoría	P(kg/m2)	
A	1500	

a. Columna excéntrica

$$Ac = \frac{1500 * (1.63 * 5.15) * 3}{0.35 * 280} = 386 cm2$$

Debido a que el área es pequeña, se trabajara con áreas de 1500 a 2000 cm2

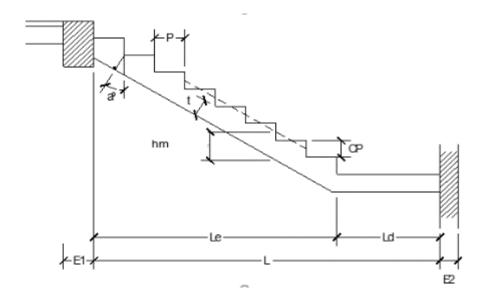

b. Columna excéntrica

$$Ac = \frac{1500 * (3.65 * 5.15) * 3}{0.35 * 280} = 865 cm2$$

c. Columna excéntrica

$$Ac = \frac{1500 * (3.65 * 5.15) * 3}{0.35 * 280} = 865 cm2$$

Tabla 4. Cuadro Resumen



Predimensionamiento de Escalera

Se considerará:

- Paso = 0.28
- Contrapaso = 0.18

Del plano de cimentación se obtiene L= 2.19 m

a. Predimensionamiento del espesor de la escalera

$$h = \frac{L}{20} o \frac{L}{25}$$

$$h1 = \frac{2.19}{20} = 0.11 \, m$$

$$h2 = \frac{2.19}{2.5} = 0.09 \, m$$

De los espesores de la garganta obtenidos, trabajaremos con el espero mayor, $h=11\,$ cm.

$$hm = ho + \frac{CP}{2}$$

Donde:

$$ho = tx \frac{\sqrt{CP^2 + P^2}}{P} = 11 x \frac{\sqrt{0.18^2 + 0.30^2}}{0.30} = 0.13 m$$

$$hm = 0.13 + \frac{0.18}{2} = 0.22 \ m$$

Se decidió emplear un espesor de:

$$t = 0.22 * \cos(32.20) = 0.186 \approx 20 cm$$

7. Memoria de cálculo

ANÁLISIS SÍSMICO

7.1 Coeficientes sísmicos

7.1.1 Zonificación

El presente proyecto, está ubicado en el distrito de Perene – Junín, por lo que pertenece a la Zona 2 y la aceleración máxima horizontal en suelo rígido con una probabilidad de 10% de ser excedida en 50 años es 0.25.

7.1.2 Perfil de suelo y parámetros de sitio

De acuerdo con el estudio de mecánica de suelos (EMS), indica que se tiene un suelo de perfil tipo S2 (suelos intermedios), caracterizada por presentar velocidades de onda de corte Vs que varían entre 180 m/s y 500 m/s. Asimismo, los parámetros de sitio son S=1.20, T_P =06 y T_L =2.0.

7.1.3 Factor de amplificación sísmica

En este proyecto la altura total del edificio es 9.75 m y CT = 35 en ambas direcciones, ya que el edificio es un pórtico. Por ello, el periodo natural de vibración de la estructura es:

$$T = \frac{9.75}{35} = 0.279s$$

Asimismo, teniendo en cuenta los valores de TP y TL definidos previamente, el factor de amplificación sísmica (C) se define por la siguiente expresión:

$$T < T_P = 0.279 < 0.6$$

 $C = 2.5$

7.1.4 Categoría de edificaciones y Factor de Uso (U)

Este proyecto pertenece a la categoría A de edificaciones esenciales, por estar destinado a ser institución educativa. Por lo tanto, el factor de importancia U = 1.5.

7.1.5 Coeficiente básico de reducción de las Fuerzas sísmicas (R0)

En este proyecto se asume que es un sistema de pórtico, con un coeficiente básico de reducción de R0 = 8.

7.2 Resultado de análisis en ETABS

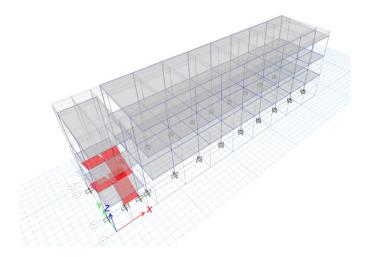


Ilustración 1. Modelo de edificación en ETABS

a) Espectro de Respuesta

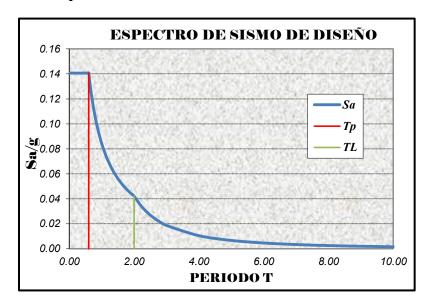


Ilustración 2. Espectro de respuesta

b) Periodos y Frecuencias

Tabla 2. Periodos y Frecuencias

Caso	Modo	Periodo Frecuencia		Eigenvalor	
		sec	cyc/sec	rad²/sec²	
Modal	1	0.621	1.611	102.4347	
Modal	2	0.487	2.053	166.4043	
Modal	3	0.413	2.421	231.3293	
Modal	4	0.389	2.569	260.4729	
Modal	5	0.364	2.745	297.5608	
Modal	6	0.351	2.847	320.0555	
Modal	7	0.283	3.53	492.0034	
Modal	8	0.259	3.857	587.4278	
Modal	9	0.24	4.166	685.0657	

c) Distorsiones de entrepiso

De acuerdo con la norma E 0.30, Diseño Sismorresistente, la distorsión máxima permitida para una estructura es de 0.007. Según los resultados obtenidos del software ETABS 18 que se muestran en la tabla 2 y 3, la edificación cumple con lo exigido en la norma técnica peruana.

Tabla 3. Distorsiones máximas en el eje X

Piso	Combinación	Distorsión	Norma	Dis < 0.007
	carga		0.75 R	¿Cumple?
Piso 3	Sdinx	0.00066	0.004488	Si
Piso 2	Sdinx	0.00110	0.0066	Si
Piso 1	Sdinx	0.000886	0.005316	Si

Tabla 4. Distorsiones máximas en el eje Y

Combinación	Distorsion	on Norma Dis < 0	
carga		0.75 R	¿Cumple?
Sdiny	0.000602	0.003612	Si
Sdiny	0.001006	0.006036	Si
Sdiny	0.000813	0.004878	Si
	Sdiny Sdiny	Sdiny 0.000602 Sdiny 0.001006	Sdiny 0.000602 0.003612 Sdiny 0.001006 0.006036

d) Verificación por cortante

Tabla 5. Resultados de cortante por entrepiso para el análisis estático

Piso	Comb.	De	Ubicación	Vx	Vy
	carga		_	tonf	tonf
Piso 1	Sx		Bottom	72.38	
Piso 1	Sy		Bottom		72.38

Tabla 6. Resultados de cortante por piso para el eje X

Piso	Comb. De	Ubicación	Vx
	carga	_	tonf
Piso 3	Sdinx	Bottom	22.2015
Piso 2	Sdinx	Bottom	68.5811
Piso 1	Sdinx	Bottom	88.7412

Tabla 7. Resultados de cortante por piso para el eje Y

Piso	Comb. De	Ubicación	Vy
	carga	_	tonf
Piso 3	Sdiny	Bottom	22.6588
Piso 2	Sdiny	Bottom	69.7234
Piso 1	Sdiny	Bottom	90.7327

La norma E 0.30 indica que la cortante basal obtenida mediante la combinación modal – espectral debe ser mayor al 80% de la obtenida en el método estático. En las tablas 8 y 9 se muestran los resultados, por lo que se afirma que se cumple con la condición descrita.

Tabla 8. Verificación entre la cortante estática y dinámica en el eje X.

Vbseudo	88.7412	Ton
Vest.	72.38	Ton
Vmin (80% Vest.)	57.904	Ton

Tabla 9. Verificación entre la cortante estática y dinámica en el eje Y.

Vbseudo	90.7327	Ton
Vest.	72.38	Ton
Vmin (80% Vest.)	57.904	Ton

7.3 Diseño de los elementos estructurales

7.3.1 Diseño de Loza Maciza

Datos:

$$f'_{e}=210 \frac{kgf}{cm^{2}}$$

$$Acab=100 \frac{kgf}{m^{2}}$$

$$f_{g}=4200 \frac{kgf}{cm^{2}}$$

$$Tab=150 \frac{kgf}{m^{2}}$$

$$\gamma_{e}=2400 \frac{kgf}{m^{3}}$$

$$Sobrecarga=200 \frac{kgf}{m^{2}}$$

Geometría:

B = 5.81 m

$$m = \frac{B}{A} = 1.734$$
 iNo es mayor que 2!

$$e_1 = \frac{2 \cdot A + 2 \cdot B}{180} = 10.178$$

$$e = \text{Round}(e_1, 12 \text{ cm}) = 12 \text{ cm}$$

$$d = e - 0.08 \, \text{m} = 9 \, \text{cm}$$

1. Metrado de cargas

Carga muerta

$$PP = 7_{G} \cdot b \cdot 6 = 288 \frac{kef}{m}$$

$$Tabiqueria = Tab \cdot b = 150 \frac{kef}{m}$$

$$Acabado = Acab \cdot b = 100 \frac{kef}{m}$$

$$W_{D} = PP + Tabiqueria + Acabado = 538 \frac{kef}{m}$$

$$W_{DD} = 1.4 \cdot W_{D} = 753.2 \frac{kef}{m}$$

Carga Viva

$$SC = Sobrerzegn \cdot b = 200 \frac{kef}{m}$$
 $W_L = SC$
 $W_{UL} = 1.7 \cdot W_L = 340 \frac{kef}{m}$

Cargas ultimas

$$W_U = W_{UD} + W_{UL} = (1.093 \cdot 10^1) \frac{kef}{2}$$

2. Análisis estructural

2.1 Momentos negativos en bordes continuos

$$A=3.35$$
 m

 $B=5.81$ m

 $n=\frac{A}{B}=0.577$
 $c_a=0.080$ colocar

 $c_b=0.018$
 $M_{B}=c_a\cdot W_{B}\cdot A^2=981.475$ left m

 $M_{B}=c_a\cdot W_{B}\cdot B^3=664.239$ left m

2.2. Momentos positivos en franja central

PARA LA CARGA MUERTA

$$c_{od} = 0.048$$
 colocar

$$c_{bd} = 0.007$$

$$M_{-} = c_{-} \cdot W_{U} \cdot A^{2} = 588.885 \text{ Mg} \cdot m$$

$$M_{\text{blan}} = c_{\text{bl}} \cdot W_{\text{U}} \cdot B^2 = 258.215 \text{ bgf} \cdot m$$

PARA LA CARGA VIVA

$$c_{al} = 0.065$$
 colocar

$$c_{tt} = 0.009$$

$$M_{\text{dist}} = c_{\text{el}} \cdot W_U \cdot A^2 = 797.448 \text{ leff} \cdot m$$

$$M_{u_{1}} = c_{u} \cdot W_{U} \cdot B^{2} = 332.12 \text{ left} \cdot m$$

MOMENTOS POSITIVOS

$$M_{\text{max}} = M_{\text{max}} + M_{\text{max}} = (1.286 \cdot 10^{3}) \text{ bgf} \cdot \text{m}$$

$$M_{\text{lam}} = M_{\text{lam}} + M_{\text{lam}} = 590.435 \text{ bgf} \cdot \text{m}$$

2.3. Momentos negativos en bordes discontinuos

$$M_{\text{exp}} = \frac{1}{3} M_{\text{exp}} = 462.111 \text{ kg/·m}$$

Es continuo

$$M_{\text{large-lin}} = \frac{1}{1} M_{\text{lyan}} = 196.812 \text{ lagf-m}$$

3. Diseño por flexión

3.1 En la dirección corta A

Cálculo de acero mínimo (Asmín) $\phi 2 = 0.9$

$$A_{--} = 0.18\% \cdot b \cdot d = 1.62 \text{ cm}^2$$

Cálculo de acero máximo (Asmax)

$$\rho_{max} = 0.75 \ \beta \cdot 0.85 \cdot \frac{f_s}{f_y} \cdot \left(\frac{6000}{6000 + f_y \cdot \frac{cm^2}{kgf}} \right) = 0.016$$

3.1.1. En el borde continuo

borde continuo

Cálculo del "a" asociado al rectángulo equivalente de esfuerzos del bloque de Whitney

$$a_1 = d - \sqrt[3]{d^2 - 2 \cdot \frac{M_{\text{energonsh}}}{\phi^2 \cdot 0.85 \cdot f_a \cdot b}} = 0.707$$

Cálculo del área de acero (As)

$$A_{a} = \frac{M_{a_{a_{1}}}}{\phi 2 \cdot f_{a} \cdot \left(d - \frac{a_{1}}{2}\right)} = 3.003 \text{ cm}^{2}$$

3.1.2. En borde central

$$M_{\text{max}} = (1.386 \cdot 10^3) \text{ kgf} \cdot m$$

Cálculo del "a" asociado al rectángulo equivalente de esfuerzos del bloque de Whitney

$$a_2 = d - \sqrt[3]{d^2 - 2 \cdot \frac{M_{epos}}{\phi^2 \cdot 0.85 \cdot f_s \cdot b}} = 1.016$$

Cálculo del área de acero (As)

$$A_{a} = \frac{M_{\frac{a}{2}}}{\phi 2 \cdot f_{0} \cdot \left(d - \frac{a_{2}}{2}\right)} = 4.319 \text{ cm}^{2}$$

3.2 En la dirección larga B

3.2.1. En el borde continuo

Cálculo del "a" asociado al rectángulo equivalente de esfuerzos del bloque de Whitney

$$a_1 = d - \sqrt[3]{d^2 - 2 \cdot \frac{M_{\text{inequal}}}{\phi^2 \cdot 0.85 \cdot f_n \cdot b}} = 0.472$$

Cálculo del área de acero (As)

$$A_{ab} = \frac{M_{abs}}{\phi 2 \cdot f_{g} \cdot \left(d - \frac{a_{g}}{2}\right)} = 2.963 \text{ cm}^{2}$$

3.2.2. En borde central

Cálculo del "a" asociado al rectángulo equivalente de esfuerzos del bloque de Whitney

$$a_{k} = d - \sqrt[3]{d^{2} - 2 \cdot \frac{M_{byon}}{\phi 2 \cdot 0.85 \cdot f_{a} \cdot b}} = 0.418$$

Cálculo del área de acero (As)

$$A_{ab} = \frac{M_{\frac{1}{2}-1}}{\phi 2 \cdot f_{0} \cdot \left(d - \frac{a_{4}}{2}\right)} = 1.777 \text{ cm}^{2}$$

3.2.2. En borde discontinuo

Cálculo del "a" asociado al rectángulo equivalente de esfuerzos del bloque de Whitney

$$a_{\rm s} = d - \sqrt[3]{d^2 - 2 \cdot \frac{M_{\rm inequality}}{\phi 2 \cdot 0.85 \cdot f_{\rm o}^2 \cdot b}} = 0.137$$

Cálculo del área de acero (As)

$$A_{\underline{a}} = \frac{M_{1-\frac{a_{\underline{a}}}{2}}}{\phi 2 \cdot f_{\underline{a}} \cdot \left(d - \frac{a_{\underline{a}}}{2}\right)} = 0.683 \text{ cm}^2$$

no cumple con acero mínimo

4. Verificación por corte

Cortante ultima

$$\phi V_C = 0.85 \cdot 0.58 \cdot \sqrt[2]{f_a \cdot \frac{kgf}{cm^2}} \cdot b \cdot d = (5.876 \cdot 10^3) \ kgf$$

Cortante actuante

$$V_a = W_{U^*} A \cdot B \cdot b = (2.128 \cdot 10^4) \text{ left} \cdot \text{m}^2$$

Cortante en la cara de apoyos

$$w_{\alpha} = 0.7$$

$$w_b = 0.4$$

$$V_{--a} = w_a \cdot \frac{V_a}{2 \cdot A \cdot b} = (2.223 \cdot 10^3) \text{ hgf}$$

$$V_{\underline{}\underline{}\underline{}} = w_{\underline{}} \cdot \frac{V_{\underline{}}}{2 \cdot B \cdot b} = 732.444 \text{ hgf}$$

$$R1$$
="Si cumple"

$$R2$$
="Si cumple"

7.3.2 Diseño de Viga Principal

a. Diseño por flexión

Se diseñará las vigas del piso 1 del eje I.



Figura 5. Datos para el tramo A-; M-

Mu = 11.22 Tn. m, Obtenido del ETABS

b = 30cm

h = 55

Cálculo de "a";

$$d = h - 6cm$$
$$d = 55cm - 6cm = 49cm$$

Cálculo del "a" asociado al rectángulo equivalente de esfuerzos del bloque de Whitney:

$$a = d - \sqrt{d^2 - \frac{2 * |Mu| * 10^5}{\emptyset * 0.85 * f'c * b}}$$
 (1)

$$a = 39 - \sqrt{39^2 - \frac{2 * |11.22| * 10^5}{0.9 * 0.85 * 210 * 30}}$$
$$a = 5.01 cm$$

Cálculo del área de acero (As_{calculado});

$$As_{calculado} = \frac{|Mu| * 10^5}{(\emptyset * fy * (d - \frac{a}{2}))}$$
(2)

$$As_{calculado} = \frac{11.22 * 10^5}{(0.9 * 4200 * (49 - \frac{5.01}{2})}$$

$$As_{calculado} = 6.38 cm^2$$

Cálculo del área de acero (As_{colocado})

$$As_{colocado} = 3 \times \emptyset 3/4" = 3 \times 2.84 \ cm^2 = 8.52 \ cm^2$$

Cálculo del acero mínimo As_{min} para sección rectangular;

$$As_{min} = 0.24\% \times b \times d (3)$$

$$As_{min} = 0.24\% \times 30 \times 49$$

$$As_{min} = 3.53 \ cm^2$$

Cálculo del acero mínimo $As_{máx}$ para sección rectangular;

$$As_{m\acute{a}x} = 1.59\% \times b \times d$$

$$As_{m\acute{a}x} = 1.59\% \times 30 \times 49$$

$$As_{max} = 23.37 \ cm^2$$

Como el $As_{calculado}$ esta dentro del rango seguimos con el diseño.

Cálculo de "a":

$$a = \frac{As_c \times fy}{0.85 \times f'c \times b}$$
$$a = \frac{8.52 \times 4200}{0.85 \times 210 \times 25}$$
$$a = 6.68 cm$$

Cálculo del momento nominal (M_n) ;

$$M_n = As_{colocado} \times fy \times (d - \frac{a}{2})$$

$$M_n = 8.52 \times 4200 \times (49 - \frac{6.68}{2})$$

$$M_n = 16.34 \ ton - m$$

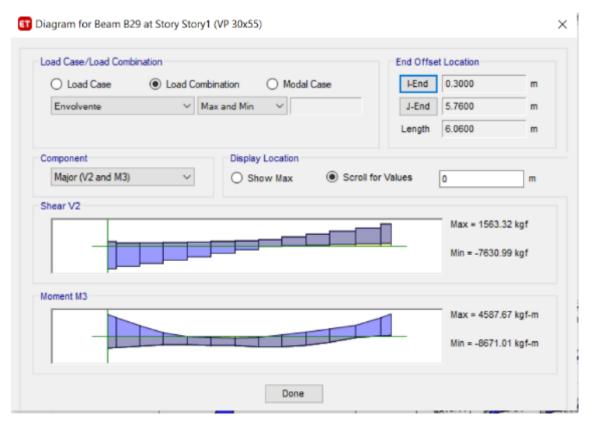


Figura 6. Datos para el tramo A+; M+

Mu = 8.67, Obtenido del ETABSb = 30cm

h = 55

Cálculo de "a";

$$d = h - 6cm$$
$$d = 55cm - 6cm = 49cm$$

Cálculo del "a" asociado al rectángulo equivalente de esfuerzos del bloque de Whitney:

$$a = d - \sqrt{d^2 - \frac{2 * |Mu| * 10^5}{\emptyset * 0.85 * f'c * b}}$$
 (1)

$$a = 49 - \sqrt{49^2 - \frac{2 * |8.67| * 10^5}{0.9 * 0.85 * 210 * 30}}$$
$$a = 3.82 cm$$

Cálculo del área de acero (*As_{calculado}*);

$$As_{calculado} = \frac{|Mu| * 10^5}{(\emptyset * fy * (d - \frac{a}{2}))}$$
(2)

$$As_{calculado} = \frac{8.67 * 10^5}{(0.9 * 4200 * (49 - \frac{3.82}{2}))}$$

$$As_{calculado} = 4.87 cm^2$$

Cálculo del área de acero (As_{colocado})

$$As_{colocado} = 3 \times \emptyset 3/4" = 3 \times 2.84 \ cm^2 = 8.52 \ cm^2$$

Cálculo del acero mínimo (As_{min}) para sección rectangular;

$$As_{min} = 3.53 \ cm^2$$

Cálculo del acero máximo ($As_{máx}$) para sección rectangular;

$$As_{m\acute{a}x} = 23.37 \ cm^2$$

Como el As_{calculado} esta dentro del rango seguimos con el diseño.

Cálculo de "a":

$$a = \frac{As_{calculado} \times fy}{0.85 \times f'c \times b}$$
$$a = \frac{8.52 \times 4200}{0.85 \times 210 \times 30}$$
$$a = 6.68 cm$$

Cálculo del momento nominal (M_n) ;

$$M_n = As_{colocado} \times fy \times (d - \frac{a}{2})$$

$$M_n = 8.52 \times 4200 \times (49 - \frac{6.68}{2})$$

 $M_n = 9.03 \ ton - m$

Este procedimiento es repetido para los momentos últimos del envoltorio. Asimismo, se verificó el diseño para cada sección con momento positivo y negativo como se muestra en las siguientes tablas:

Tabla 10 Diseño por flexión, Eje I, Piso 1 M- y M+

				PISO	1		
		VOLADO	VOLADO	АРОҮО А-	APOYO A+	АВ	АРОУО В-
	Mu (ton-m)			11.22	8.67	4.08	8.86
	b (cm)			30.00	30.00	30.00	30.00
PR	d (cm)			49.00	49.00	49.00	49.00
PRIMERO PISO	a (cm)			5.01	3.82	1.76	3.91
RO	As (cm2)			6.38	4.87	2.34	4.98
PIS	As mín (cm2)			3.53	3.53	3.53	3.53
0	As máx (cm2)			23.37	23.37	23.37	23.37
	# de varillas			3 de 3/4"	3 de 3/4"	3 de 1/2"	3 de 3/4"
	As colocado			8.52	8.52	3.87	8.52
	a (cm)			6.68	6.68	3.04	6.68
	Mn (ton-m)			16.34	16.34	7.72	16.34

Finalmente, con los cálculos del diseño por flexión realizamos la representación en la documentación de estructuras (ver anexo **plano E-2).**

b. Diseño por Capacidad

Para la obtención de la fuerza cortante última se requiere realizar la comparación de tres tipos de envolvente entre ellos son:

- a) Envolvente de combinaciones especiales
- b) Envolvente asociado al momento nominal
- c) Envolvente de las combinaciones normales

Mediante la siguiente relación: Se obtendrá el V_u máx [c; min[a, b]]

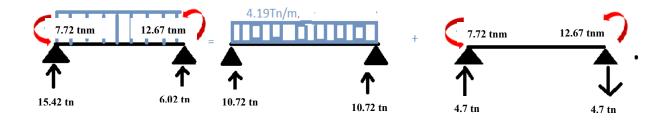
Para la obtención de la envolvente asociada al momento nominal (Mn), se tiene los siguientes datos:

Ln=5.12 Wcm (ETABS)=2Tn Wev (ETABS)=1.35Tn

Para Momento Antihorario

 $Mn_{A+} = 16.34 \, Tnm \dots Obtenido del diseño de Vigas por Flexión$

 $Mn_{B-}=7.72\ Tnm$... Obtenido del diseño de Vigas por Flexión


Para Momento Horario

 $Mn_{A+}=7.72\,Tnm$... Obtenido del diseño de Vigas por Flexión

 $Mn_{B2-} = 12.67Tnm \dots Obtenido del diseño de Vigas por Flexión$

Entonces el W_u para el tramo AB es:

$$W_u = 1.25x(2 + 1.35)$$

 $W_u = 4.19 \ tn / m$

Figura 7. Análisis Estático para tramo AB producido por los Mn en sentido horario y carga Viva más muerta por un factor.

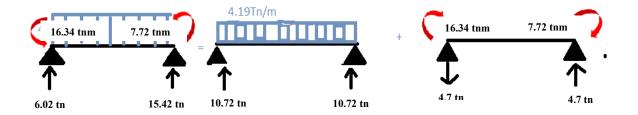


Figura8. Análisis Estático para tramo AB producido por el Mn en sentido Anti horario y carga Viva más muerta por un factor.

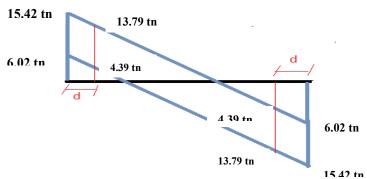


Figura 9. Envolvente de Fuerzas cortantes asociado al Mn (Obtenido del diseño por Flexión).

Los cortantes a una distancia "d" de la cara de las columnas son obtenidos a partir de la siguiente ecuación:

Para
$$V_{isost\acute{a}tico}=15.42\,Tn$$

$$V_d=W_u-dx\,V_{isost\acute{a}tico}$$

$$V_d=4.19-0.39x15.42$$

$$V_d=13.79Tn$$
Para $V_{isost\acute{a}tico}=6.02Tn$

$$V_d=W_u-dx\,V_{isost\acute{a}tico}$$

$$V_d=4.19-0.39x6.02$$

$$V_d=4.39Tn$$
Para $V_{isost\acute{a}tico}=6.02Tn$

$$V_d=W_u-dx\,V_{isost\acute{a}tico}$$

$$V_d=4.19-0.39x6.02$$

$$V_d=4.39Tn$$
Para $V_{isost\acute{a}tico}$

$$V_d=W_u-dx\,V_{isost\acute{a}tico}$$

$$V_d=4.39Tn$$
Para $V_{isost\acute{a}tico}=15.42Tn$

$$V_d=W_u-dx\,V_{isost\acute{a}tico}$$

$$V_d=4.19-0.39x15.42$$

$$V_d=13.79Tn$$

A partir de los resultados de las cortantes nominales asociados al Mn presentados en la tabla 6, se determinará el VMn mayor realizando las comparaciones con la envolvente de combinaciones especiales y normales.

Tabla 6. Cuadro de resumen de las cortantes asociando al momento nominal VMn-B

	VOLADO	APOYO A-	APOYOA+	АРОУО В-
Vu (ton)	-	18.98	13.79	13.79

Del software ETABS se obtuvo el ítem a) y c) los cuales se muestran en las siguientes tablas:

Tabla 7. Envolvente de las combinaciones especiales-A.

V especial		VOLADO	APOYO A-	APOYOA+	APOYO B-
	Vu (ton)	0	5.10	7.30	9.50

Tabla 8. Envolvente de las combinaciones normales-C.

V normal		VOLADO	APOYO A-	APOYOA+	APOYO B-
	Vu (ton)	0	5.30	7.60	9.70

Resultando para tramo 1 y 2

$$Vu = 5.3 \text{ tn}; Vu = 9.7 \text{ tn}$$

Para la realización de los espaciamientos de estribos en viga se presenta el cuadro resumen del primer piso del eje I.

Tabla 11 Diseño por fuerza cortante para la viga del piso 1 - eje I

DESCRIPCION	TRAMO 1	TRAMO 2
Vu (ton)	5.30	9.70
b (cm)	25	25
d (cm)	39	39
Vc (ton)	7.48	7.48
φVc (ton)	6.36	6.36
Vs (ton)	-1.253	3.92
Vs máx. (ton)	29.67	29.67
Av (cm2)	1.42	1.42
s (cm) calculado	-185.61	59.28
s (cm) máx.	10	10

La siguiente tabla muestra la distribución de estribos para el primer piso del eje I y la representación se ve en la **documentación E-1.**

Tabla 12. Distribución de estribos para la viga del piso 1 - eje I

En la zona de confinamiento				
	S MAX (cm)			
NORMA	TRAMO 1	TRAMO 2		
a)	9.75	9.75		
b)	12.7	12.7		
c)	22.86	22.86		
d)	30	30		
S MAX (cm)	9.75	9.75		
S MAX (cm)	10	10		
Smax elegido	en confinamiento	fuera del		
	confinamiento			
S MAX (cm)	19.5	19.5		
S MAX (cm)	15	15		
1 @ 0,05m ;10 @ 10cm; rto				
Resumen .15cm				

7.3.3 Diseño de Columna rectangular

Datos

Geometría de la columna

b=30 cm b=60 cm H=10.25 cm

Datos de diseño

$$f_{\rm e} = 280 \frac{{\rm kgf}}{{\rm cm}^2}$$
 $\varepsilon_{\rm cm} = 0.003$

$$f_y = 4200 \frac{k_0 f}{cm^2}$$
 $\varepsilon_m = 0.0021$

$$E_1 = 2100000 \frac{kgf}{m^2}$$

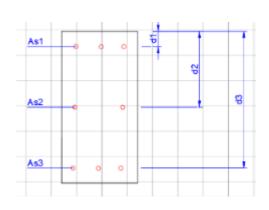
Cálculo de Asmin Cálculo de Asmax

$$\rho_{min} \coloneqq 1\%$$
 $\rho_{meas} \coloneqq 6\%$

$$A_{\underline{a}} = \rho_{\underline{a}} \cdot b \cdot h = 18 \text{ cm}^2$$

$$A_{\underline{a}} = \rho_{\underline{a}} \cdot b \cdot h = 108 \text{ cm}^2$$

TABLA DE REFUERZOS EN FUNCION A SU AREA Y NUMERO DE BARRAS


-	Dián	netro	Peso		Área de los refuerzos según númer						ero de barras (cm²)		
•	in	cm	kg/m	1	2	3	4	5	6	7	8	9	10
2	1/4	0,635	0,25	0,32	0,64	0,96	1,28	1,60	1,92	2,24	2,56	2.88	3,20
3	3/8	0.953	0,58	0.71	1,42	2,13	2,84	3,55	4,26	4,97	5,68	6,39	7,10
4	1/2	1,270	1,02	1,29	2,58	3,87	5,16	6,45	7,74	9,03	10,32	11,61	12,90
5	5/8	1,588	1,60	2,00	4,00	6,00	8,00	10,00	12,00	14,00	16,00	19,00	20,00
6	3/4	1,905	2,26	2,84	5,68	8,52	11,36	14,20	17,04	19,88	22,72	25,56	28,40
8	1	2,540	4,04	5,10	10,20	15,30	20,40	25,50	30,60	35,70	40,80	45,90	51,00
11	1 3/8	3.493	7,95	10,06	20,12	30,18	40.24	50,30	60,36	70,42	80,48	90.54	100,60

Cálculo de Asp

$$D = \frac{3}{4} in$$

$$A_{\rm m} = \pi \cdot \frac{D^2}{4} = 2.85$$

$$A_{3p} = 8 \cdot A_n = 22.802$$
 cm²

8 \$\phi 3/4"

$$R1 = 22.802$$

Diagrama de interacción

1. Distribución de barras

$$barras = \begin{bmatrix} D & D & D \\ D & 0 & D \\ D & D & D \end{bmatrix} = \begin{bmatrix} 1.905 & 1.905 & 1.905 \\ 1.905 & 0 & 1.905 \\ 1.905 & 1.905 & 1.905 \end{bmatrix}$$

2. Numero de columnas y filas

$$c = \cos(barras) = 3$$
 $k = \cos(barras) = 3$

3. Área de cada barra de acero

$$A_{\perp} = \frac{1}{4} = \begin{bmatrix} 2.85 & 2.85 & 2.85 \\ 2.85 & 0 & 2.85 \\ 2.85 & 2.85 & 2.85 \end{bmatrix}$$

4. Área de cada fila

$$A_{\mathbf{q}} = \sum_{i=1}^{h} A_{\mathbf{m}} = [8.551 \ 5.7 \ 8.551] \text{ cm}^2$$

$$A_{\mathbf{m}} = \sum_{i=1}^{h} A_{\mathbf{m}}^{-i} = \begin{bmatrix} 8.551 & 5.7 & 8.551 \end{bmatrix} \text{ cm}^{2}$$

$$A_{\mathbf{m}} = \sum_{i=1}^{c} A_{\mathbf{m}}^{-i} = \begin{bmatrix} 8.551 \\ 5.7 \\ 8.551 \end{bmatrix} \text{ cm}^{2}$$

5. Ubicación de filas de acero

$$r=4$$
 cm m=25.0475 cm $d_1=r+\frac{D}{2}=4.953$ cm

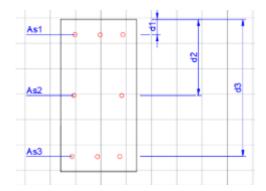
$$d_2 = d_1 + m = 30$$

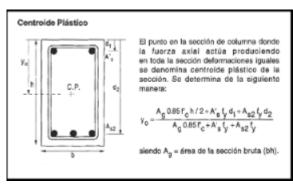
$$d_3 = d_2 + m = 55.048$$

$$d = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} = \begin{bmatrix} 4.963 \\ 30 \\ 55.048 \end{bmatrix} \text{ cm}$$

Cálculo de la matriz (P)= As x d

$$P = \begin{bmatrix} d_1 \cdot A_{m_1} \\ d_2 \cdot A_{m_2} \\ d_3 \cdot A_{m_3} \end{bmatrix} = \begin{bmatrix} 42.347 \\ 171.014 \\ 470.694 \end{bmatrix} cm^3$$


$$P_i = \sum_{i=1}^k P_i = 684.055$$
 cm²


6. Centroide plástico

$$A_{\mathbf{p}} = b \cdot h = (1.8 \cdot 10^3)$$
 cm²

$$A_{\rm at} = \sum_{k=1}^k A_{\rm act_i} = 22.802$$
 cm²

$$y_{v} = \frac{\left(A_{v} \cdot 0.85 \cdot f_{v} \cdot 0.5 \cdot h + f_{v} \cdot P_{t}\right)}{A_{v} \cdot 0.85 \cdot f_{v} + A_{st} \cdot f_{v}} = 30 \text{ cm}$$

7. Compresión pura

Columnas con estribos:
$$(\alpha = 0.8, \ \phi = 0.7)$$

$$Pn \ max = 0.8 \ Po$$

$$Pu \ max = \phi \ 0.8 \ Po = \phi \ 0.8 \ [0.85 \ fc \ (Ag - Ast) + fy \ Ast]$$

$$\underline{Columnas \ con \ espirales}: \ (\alpha = 0.85, \ \phi = 0.75)$$

$$Pn \ max = 0.85 \ Po$$

$$\phi_1 = 0.7$$

$$\alpha_1 = 0.8$$

$$P_a = 0.85 \cdot f_a \cdot (A_g - A_{ab}) + f_g \cdot A_{ab} = (5.187 \cdot 10^5) \text{ bgf}$$

$$a_1 \cdot P_a = (4.15 \cdot 10^5)$$
 but

Corte horizontal en el diagrama nominal

 $Pu max = \phi 0.85 Po = \phi 0.85 [0.85 fc (Ag - Ast) + fy Ast]$

$$\phi_1 \cdot P_o = (3.631 \cdot 10^4)$$

$$\phi_1 \cdot \alpha_1 \cdot P_o = (2.906 \cdot 10^4)$$
 b

Corte horizontal en el diagrama de diseño

8. Tracción pura

$$\phi_2$$
:=0.9 T_o =- A_{ab} • f_a =-9.577•10 4 bgf

$$\phi_{a} \cdot T_{a} = -8.619 \cdot 10^{4}$$

To = Ast fy $\phi To = 0.9 Ast fy$

9. Falla balanceada

 $\beta 1 = 0.85$ Digitar teniendo en cuenta fy

$$c_{b} = \frac{6000}{\left(6000 + f_{y} \cdot \frac{cm^{2}}{kgf}\right)} \cdot d_{b} = 32.381 \text{ cm}$$

$$a = \beta 1 \cdot c_1 = 27.524$$
 cm

$$A_{xx} = \begin{bmatrix} 8.551 \\ 5.7 \\ 8.551 \end{bmatrix} cm^{2} \qquad d = \begin{bmatrix} 4.963 \\ 30 \\ 85.048 \end{bmatrix} cm \qquad B_{x} = \begin{bmatrix} \frac{\mathcal{E}_{cm}}{c_{b}} \cdot \left(c_{b} - d_{1}\right) \\ \frac{\mathcal{E}_{cm}}{c_{b}} \cdot \left(c_{b} - d_{2}\right) \\ \frac{\mathcal{E}_{cm}}{c_{b}} \cdot \left(c_{b} - d_{2}\right) \end{bmatrix} = \begin{bmatrix} 0.003 \\ 2.206 \cdot 10^{-4} \\ -0.002 \end{bmatrix}$$

$$\begin{split} f_{st} &= e_s \cdot E_s = \begin{bmatrix} 5.336 \cdot 10^3 \\ 463.223 \\ -4.41 \cdot 10^3 \end{bmatrix} \frac{\log f}{\cos^2} \qquad f_{S} &= \begin{bmatrix} \min \left(f_y, f_{st_1} \right) \\ \min \left(f_y, f_{st_2} \right) \\ \min \left(-f_y, -f_{st_2} \right) \end{bmatrix} = \begin{bmatrix} 4.2 \cdot 10^3 \\ 463.223 \\ -4.2 \cdot 10^3 \end{bmatrix} \frac{\log f}{\cos^2} \end{split}$$

$$F = \begin{bmatrix} f_{S_1} \cdot A_{m_1} \\ f_{S_2} \cdot A_{m_2} \\ f_{S_3} \cdot A_{m_3} \end{bmatrix} = \begin{bmatrix} 3.591 \cdot 10^4 \\ 2.641 \cdot 10^3 \\ -3.591 \cdot 10^4 \end{bmatrix} \log X_p = \begin{bmatrix} abs(y_a - d_1) \\ abs(y_a - d_2) \\ abs(y_a - d_3) \end{bmatrix} = \begin{bmatrix} 0.25 \\ 0 \\ 0.25 \end{bmatrix} m$$

$$M = \begin{bmatrix} abs(F_1) \cdot X_{p_1} \\ abs(F_2) \cdot X_{p_2} \\ abs(F_3) \cdot X_{p_3} \end{bmatrix} = \begin{bmatrix} 8.995 \cdot 10^3 \\ 0 \\ 8.995 \cdot 10^2 \end{bmatrix} kgf \cdot m$$

$$F_s = \sum_{i=1}^b F_i = (2.641 \cdot 10^b) \ \text{legf} \qquad F_s = 0.86 \cdot f_c \cdot b \cdot a = (1.965 \cdot 10^b) \ \text{legf}$$

$$M_a = \sum_{i=1}^{k} M_i = (1.799 \cdot 10^4) \ \text{legf} \cdot m$$
 $M_a = F_a \cdot \left(y_a - \frac{a}{2}\right) = (3.191 \cdot 10^4) \ \text{legf} \cdot m$

Finalmente:

Carga Axial Momento

$$\phi_3 := 0.7$$
 $M_n = M_s + M_s = (4.99 \cdot 10^4) \text{ bgf} \cdot m$
 $P_n = F_s + F_s = (1.992 \cdot 10^5) \text{ bgf}$ $\phi_s \cdot M_n = (3.493 \cdot 10^4) \text{ bgf} \cdot m$
 $\phi_s \cdot P_n = (1.394 \cdot 10^5) \text{ bgf}$

10. Falla frágil c > cb

$$\beta 1 = 0.85$$
 Digitar teniendo en cuenta fy

$$c_1 = d_3 = 0.55$$

$$A_{xz} = \begin{bmatrix} 8.551 \\ 5.7 \\ 8.551 \end{bmatrix} cm^{2} \qquad d = \begin{bmatrix} 4.963 \\ 30 \\ 55.048 \end{bmatrix} cm \qquad B_{zl} = \begin{bmatrix} \frac{c_{zz}}{c_{1}} \cdot \left(c_{1} - d_{1}\right) \\ \frac{c_{zz}}{c_{1}} \cdot \left(c_{1} - d_{2}\right) \\ \frac{c_{zz}}{c_{1}} \cdot \left(c_{1} - d_{2}\right) \end{bmatrix} = \begin{bmatrix} 0.003 \\ 0.001 \\ 0 \end{bmatrix}$$

$$f_{\text{eff}} = e_{\text{eff}} \cdot E_{\text{e}} = \begin{bmatrix} 5.788 \cdot 10^3 \\ 2.867 \cdot 10^3 \end{bmatrix} \frac{\log f}{\cos^2} \qquad f_{\text{Eff}} = \begin{bmatrix} \sin(f_y, f_{\text{eff}_y}) \\ \sin(f_y, f_{\text{eff}_y}) \\ \sin(f_y, f_{\text{eff}_y}) \end{bmatrix} = \begin{bmatrix} 4.2 \cdot 10^3 \\ 2.867 \cdot 10^3 \end{bmatrix} \frac{\log f}{\cos^2}$$

$$F_{1} = \begin{bmatrix} f_{S1_{1}} \cdot A_{m_{1}} \\ f_{S1_{2}} \cdot A_{m_{2}} \\ f_{S1_{3}} \cdot A_{m_{3}} \end{bmatrix} = \begin{bmatrix} 3.591 \cdot 10^{4} \\ 1.634 \cdot 10^{4} \\ 0 \end{bmatrix} \log f \qquad \qquad X_{p} = \begin{bmatrix} \text{abs} \left(y_{n} - d_{1} \right) \\ \text{abs} \left(y_{n} - d_{2} \right) \\ \text{abs} \left(y_{n} - d_{3} \right) \end{bmatrix} = \begin{bmatrix} 0.25 \\ 0 \\ 0.25 \end{bmatrix} m$$

$$\boldsymbol{M}_{1} = \begin{bmatrix} \operatorname{abs}\left(\boldsymbol{F}_{1_{1}}\right) \cdot \boldsymbol{X}_{p_{1}} \\ \operatorname{abs}\left(\boldsymbol{F}_{1_{2}}\right) \cdot \boldsymbol{X}_{p_{2}} \\ \operatorname{abs}\left(\boldsymbol{F}_{1_{3}}\right) \cdot \boldsymbol{X}_{p_{3}} \end{bmatrix} = \begin{bmatrix} 8.995 \cdot 10^{3} \\ 0 \\ 0 \end{bmatrix} \boldsymbol{kgf} \cdot \boldsymbol{m}$$

. ura el concreto

$$F_{ab} = \sum_{i=1}^{b} F_{1_i} = (5.225 \cdot 10^4) \text{ legf}$$
 $F_{ab} = 0.85 \cdot f_a \cdot b \cdot a_1 = (3.341 \cdot 10^5) \text{ legf}$

$$M_{al} = \sum_{i=1}^{h} M_{1_i} = (8.996 \cdot 10^3) \ \text{leff-m}$$
 $M_{al} = F_{al} \cdot \left(y_a - \frac{a_1}{2}\right) = (2.207 \cdot 10^4) \ \text{leff-m}$

Finalmente:

Carga Axial

$$\phi_4 := 0.7 \qquad \qquad M_{\rm ell} = M_{\rm ell} + M_{\rm ell} = (3.106 \cdot 10^4) \text{ hgf -m}$$

$$P_{\rm ell} = F_{\rm ell} + F_{\rm ell} = (3.863 \cdot 10^5) \text{ hgf} \qquad \qquad \phi_4 \cdot M_{\rm ell} = (2.174 \cdot 10^4) \text{ hgf -m}$$

$$\phi_4 \cdot P_{\rm ell} = (2.704 \cdot 10^5) \text{ hgf}$$

11. Falla dúctil c < cb

$$\beta 1 = 0.85$$
 Digitar teniendo en cuenta fy

$$c_2 = d_2 = 30$$

$$A_{xz} = \begin{bmatrix} 8.551 \\ 5.7 \\ 8.551 \end{bmatrix} cm^{2} \qquad d = \begin{bmatrix} 4.963 \\ 30 \\ 55.048 \end{bmatrix} cm \qquad a_{xz} = \begin{bmatrix} \frac{a_{xx}}{c_{2}} \cdot (c_{1} - d_{1}) \\ \frac{a_{xx}}{c_{2}} \cdot (c_{2} - d_{2}) \\ \frac{a_{xx}}{c_{2}} \cdot (c_{3} - d_{3}) \end{bmatrix} = \begin{bmatrix} 0.003 \\ 0 \\ -0.003 \end{bmatrix}$$

$$f_{ab} = e_{ab} - E_{a} = \begin{bmatrix} 5.26 \cdot 10^{3} \\ 0 \\ -5.26 \cdot 10^{3} \end{bmatrix} \frac{\log f}{\cos^{2}} \qquad f_{B2} = \begin{bmatrix} \min \left(f_{y}, f_{ad_{1}} \right) \\ \min \left(f_{y}, f_{ad_{2}} \right) \\ \min \left(-f_{y}, -f_{ad_{2}} \right) \end{bmatrix} = \begin{bmatrix} 4.2 \cdot 10^{3} \\ 0 \\ -4.2 \cdot 10^{2} \end{bmatrix} \frac{\log f}{\cos^{2}}$$

$$F_{1} = \begin{bmatrix} f_{S1_{1}} \cdot A_{m_{1}} \\ f_{S1_{2}} \cdot A_{m_{2}} \\ f_{S1_{3}} \cdot A_{m_{3}} \end{bmatrix} = \begin{bmatrix} 3.591 \cdot 10^{4} \\ 0 \\ -3.591 \cdot 10^{4} \end{bmatrix} \underbrace{\mathbf{kgf}}_{\mathbf{kgf}} \qquad X_{p} = \begin{bmatrix} \mathbf{abs} \left(y_{n} - d_{1} \right) \\ \mathbf{abs} \left(y_{n} - d_{2} \right) \\ \mathbf{abs} \left(y_{n} - d_{3} \right) \end{bmatrix} = \begin{bmatrix} 0.25 \\ 0 \\ 0.25 \end{bmatrix}_{\mathbf{m}}$$

$$M_{3} = \begin{bmatrix} \operatorname{abs}(F_{2_{1}}) \cdot X_{p_{1}} \\ \operatorname{abs}(F_{2_{2}}) \cdot X_{p_{2}} \\ \operatorname{abs}(F_{2_{3}}) \cdot X_{p_{3}} \end{bmatrix} = \begin{bmatrix} 8.995 \cdot 10^{3} \\ 0 \\ 8.995 \cdot 10^{3} \end{bmatrix} \log f \cdot m$$

. ura el concreto

$$F_{\mathbf{d}} = \sum_{i=1}^{k} F_{\mathbf{2}_i} = 0 \text{ legf}$$

$$F_{ab} = 0.85 \cdot f_a \cdot b \cdot a_b = (1.821 \cdot 10^5) \text{ bgf}$$

$$M_{ab} = \sum_{i=1}^{b} M_{2i} = (1.799 - 10^4) \ \text{legf-val}$$

$$M_{ab} = \sum_{i=1}^{b} M_{2i} = (1.799 - 10^4) \ \text{leff-m}$$
 $M_{ab} = F_{ab} \cdot \left(y_a - \frac{a_2}{2}\right) = (3.141 \cdot 10^4) \ \text{leff-m}$

Finalmente:

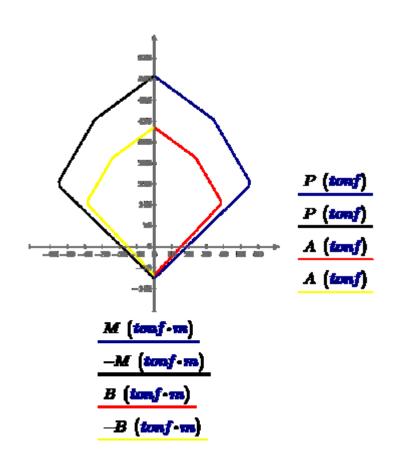
Carga Axial

 $\phi_5 = 0.7$

$$P = F - + F = (1.821 \cdot 10^5)$$
 bef

$$M_{ab} = M_{ab} + M_{ab} = (4.94 \cdot 10^4) \text{ hg/·m}$$

$$P_{ad} = F_{ad} + F_{ad} = (1.821 \cdot 10^5) \text{ bgf}$$


$$\phi_0 \cdot M_{\rm eff} = (3.458 \cdot 10^4) \, \log f \cdot m$$

$$\phi_{5} \cdot P_{a3} = (1.274 \cdot 10^{5})$$
 kgf

DIAGRAMA

$$P = \begin{bmatrix} P_{g} \\ P_{u1} \\ P_{u} \\ P_{u2} \\ T_{g} \end{bmatrix} = \begin{bmatrix} 5.187 \cdot 10^{3} \\ 8.863 \cdot 10^{3} \\ 1.992 \cdot 10^{3} \\ 1.821 \cdot 10^{3} \\ -9.577 \cdot 10^{4} \end{bmatrix} \text{ } \mathbf{M} = \begin{bmatrix} 0 \\ M_{u1} \\ M_{u} \\ M_{u2} \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 3.106 \cdot 10^{4} \\ 4.99 \cdot 10^{4} \\ 4.94 \cdot 10^{4} \end{bmatrix} \text{ } \mathbf{kgf} \cdot \mathbf{m}$$

$$A = \begin{bmatrix} \phi_{1} \cdot P_{g} \\ \phi_{4} \cdot P_{u1} \\ \phi_{5} \cdot P_{u} \\ \phi_{5} \cdot P_{u2} \\ \phi_{5} \cdot T_{g} \end{bmatrix} = \begin{bmatrix} 3.631 \cdot 10^{3} \\ 2.704 \cdot 10^{3} \\ 1.394 \cdot 10^{3} \\ 1.274 \cdot 10^{3} \\ -8.619 \cdot 10^{4} \end{bmatrix} \text{ } \mathbf{B} = \begin{bmatrix} 0 \\ \phi_{4} \cdot M_{u1} \\ \phi_{5} \cdot M_{u2} \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 2.174 \cdot 10^{4} \\ 3.458 \cdot 10^{4} \\ 3.458 \cdot 10^{4} \\ 0 \end{bmatrix} \text{ } \mathbf{kgf} \cdot \mathbf{m}$$

7.3.4 Diseño de Columna L

Datos

Geometría de la columna

$$h_1 = 60$$

H = 10.25 77

$$h_2 = 25$$

$$A = b_1 \cdot h_1 + (b_1 - b_2) \cdot h_2 = (2.426 \cdot 10^2)$$

Datos de diseño

$$\varepsilon_{\rm cm}\!=\!0.003$$

$$f_y = 4200 \frac{kgf}{cm^2}$$

$$\varepsilon_{\rm ss}\!=\!0.0021$$

$$E_1 = 20000000 \frac{kgf}{cm^2}$$

Cálculo de Asmin

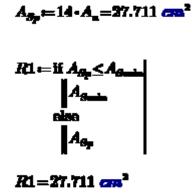
Cálculo de Asmax

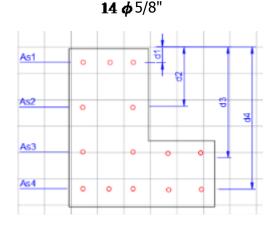
$$\rho_{min} \coloneqq 1\%$$

$$\rho_{max} = 6\%$$

$$A_{3} = \rho_{-} \cdot A = 24.25 \text{ cm}^2$$

$$A_{\bullet \bullet \bullet} = \rho_{\bullet \bullet} \cdot A = 145.5$$


TABLA DE REFUERZOS EN FUNCION A SU AREA Y NUMERO DE BARRAS


-	Dián	netro	Peso	Area de los refuerzos según número de barras (cm²)									
	in	cm	kg/m	1	2	3	4	5	6	7	8	9	10
2	1/4	0,635	0,25	0,32	0,64	0,96	1,28	1,60	1,92	2,24	2,56	2,88	3,20
3	3/8	0,953	0,58	0,71	1,42	2,13	2,84	3,55	4,26	4,97	5,68	6,39	7,10
4	1/2	1,270	1,02	1,29	2,58	3,87	5,16	6,45	7,74	9,03	10,32	11,61	12,90
5	5/8	1,588	1,60	2,00	4,00	6,00	8,00	10,00	12,00	14,00	16,00	19,00	20,00
6	3/4	1,905	2,26	2,84	5,68	8,52	11,36	14,20	17,04	19,88	22,72	25,56	28,40
8	1	2,540	4,04	5,10	10,20	15,30	20,40	25,50	30,60	35,70	40,80	45,90	51,00
11	1 3/8	3,493	7,95	10,06	20,12	30,18	40,24	50,30	60,36	70,42	80,48	90,54	100,60

Cálculo de Asp

$$D = \frac{5}{8} =$$

$$A_{m} = \pi \cdot \frac{D^{2}}{A} = 1.979 \text{ cm}^{2}$$

Diagrama de interacción

1. Distribución de barras

$$basras \! \coloneqq \! \begin{bmatrix} D & D & D & 0 & 0 \\ D & 0 & D & 0 & 0 \\ D & 0 & D & D & D \\ D & D & D & D & D \end{bmatrix} \! = \! \begin{bmatrix} 1.588 & 1.588 & 1.588 & 0 & 0 \\ 1.588 & 0 & 1.588 & 0 & 0 \\ 1.588 & 0 & 1.588 & 1.588 & 1.588 \\ 1.588 & 1.588 & 1.588 & 1.588 & 1.588 \end{bmatrix} \! cm$$

2. Numero de columnas y filas

$$c = cols(barras) = 5$$

 $k = rows(barras) = 4$

3. Área de cada barra de acero

$$A_{m} = \pi \cdot \frac{\overrightarrow{barras^{2}}}{4} = \begin{bmatrix} 1.979 & 1.979 & 0 & 0 \\ 1.979 & 0 & 1.979 & 0 & 0 \\ 1.979 & 0 & 1.979 & 1.979 & 1.979 \\ 1.979 & 1.979 & 1.979 & 1.979 & 1.979 \end{bmatrix} cm^{2}$$

4. Área de cada fila

$$A_{\mathbf{m}} = \sum_{i=1}^{k} A_{\mathbf{m}}^{\widehat{i}} = \begin{bmatrix} 7.917 & 3.959 & 7.917 & 3.959 & 3.959 \end{bmatrix} \cos^{2}$$

$$A_{\mathbf{m}} = \sum_{i=1}^{n} A_{\mathbf{m}}^{\widehat{i}} = \begin{bmatrix} 5.938 \\ 3.959 \\ 7.917 \\ 9.897 \end{bmatrix} \cos^{2}$$

$$A_{m} = \sum_{i=1}^{n} A_{m}^{i} = \begin{bmatrix} 5.938 \\ 3.959 \\ 7.917 \\ 9.897 \end{bmatrix} \text{ cm}^{2}$$

5. Ubicación de filas de acero

$$r=4$$
 cm $m=16.804$ cm $d_1=r+\frac{D}{2}=4.794$ cm

$$d_2 = d_1 + m = 21.598$$

$$d_2 = d_2 + m = 38.402$$

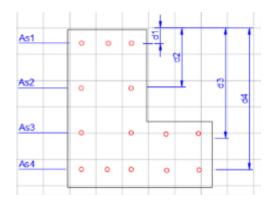
$$d_4 = d_3 + m = 55.206$$

$$d := \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ d_4 \end{bmatrix} = \begin{bmatrix} 4.794 \\ 21.598 \\ 38.402 \\ 55.206 \end{bmatrix}$$

Cálculo de la matriz (P)= As x d

$$P = \begin{bmatrix} d_1 \cdot A_{-f_1} \\ d_2 \cdot A_{-f_2} \\ d_3 \cdot A_{-f_3} \\ d_4 \cdot A_{-f_4} \end{bmatrix} = \begin{bmatrix} 28.465 \\ 85.498 \\ 304.038 \\ 546.351 \end{bmatrix}$$

$$P_i = \sum_{i=1}^{k} P_i = 964.352 \text{ cm}^2$$


6. Centroide plástico

$$A = (2.425 \cdot 10^3)$$
 cm²

$$A_{ab} = \sum_{i=1}^{b} A_{af_i} = 27.711 \text{ cm}^2$$

$$c_{1} = \frac{h_{1} \cdot h_{2} \cdot \frac{h_{1}}{2} + h_{2} \cdot \left(h_{1} - h_{2}\right) \cdot \left(h_{1} - \frac{h_{2}}{2}\right)}{h_{1} \cdot h_{2} + h_{2} \cdot \left(h_{1} - h_{2}\right)} = 0.345 \text{ Test}$$

$$y_{v} = \frac{\left(A \cdot 0.85 \cdot f'_{v} \cdot c_{t} + f_{y} \cdot P_{t}\right)}{A \cdot 0.85 \cdot f'_{v} + A_{w} \cdot f_{v}} = 34.559 \text{ cm}$$

7. Compresión pura

Columnas con estribos:
$$(\alpha = 0.8, \ \phi = 0.7)$$

$$Pn \ max = 0.8 \ Po$$

$$Pu \ max = \phi \ 0.8 \ Po = \phi \ 0.8 \ [0.85 \ fc \ (Ag - Ast) + fy \ Ast]$$

$$Columnas \ con \ espirales: (\alpha = 0.85, \ \phi = 0.75)$$

$$Pn \ max = 0.85 \ Po$$

$$Pu \ max = \phi \ 0.85 \ Po = \phi \ 0.85 \ [0.85 \ fc \ (Ag - Ast) + fy \ Ast]$$

$$\phi_1 = 0.7$$

$$\alpha_1 = 0.8$$

$$P_a = 0.85 \cdot f_a \cdot (A - A_a) + f_p \cdot A_a = (6.869 \cdot 10^5)$$
 bgf

 $a_1 \cdot P_a = (5.496 \cdot 10^5)$ bgf corte horizontal en el diagrama nominal

 $a_1 \cdot P_a = (4.809 \cdot 10^5)$ bgf

 $a_1 \cdot P_a = (4.809 \cdot 10^5)$ bgf corte horizontal en el diagrama de diseño

8. Tracción pura

$$\phi_2 := 0.9$$
 $T_0 = Ast fy$
 $\phi T_0 = 0.9 Ast fy$
 $\phi T_0 = -1.164 \cdot 10^5 \text{ baf} xqqqq$
 $\phi T_0 = 0.9 Ast fy$

9. Falla balanceada (compresión en la parte superior)

$$\beta 1 = 0.85$$
 digitar teniendo en cuenta fy

$$c_{k} = \frac{6000}{\left(6000 + f_{y} \cdot \frac{c_{x}x^{2}}{k_{y}f}\right)} \cdot d_{k} = 32.474 \text{ cm}$$

$$a = \beta 1 \cdot c_b = 27.603$$
 cm

$$A_{a,j} = \begin{bmatrix} 5.938 \\ 3.959 \\ 7.917 \\ 9.897 \end{bmatrix} \text{ cm}^{2} \qquad \mathbf{d} = \begin{bmatrix} 4.794 \\ 21.598 \\ 38.402 \\ 55.206 \end{bmatrix} \text{ cm} \qquad \mathbf{c}_{a} = \begin{bmatrix} \frac{\epsilon_{cm}}{c_{b}} \cdot \left(c_{b} - d_{1}\right) \\ \frac{\epsilon_{cm}}{c_{b}} \cdot \left(c_{b} - d_{2}\right) \\ \frac{\epsilon_{cm}}{c_{b}} \cdot \left(c_{b} - d_{2}\right) \\ \frac{\epsilon_{cm}}{c_{b}} \cdot \left(c_{b} - d_{2}\right) \end{bmatrix} = \begin{bmatrix} 0.003 \\ 0.001 \\ -5.476 \cdot 10^{-4} \\ -0.002 \end{bmatrix}$$

$$f_{st} \coloneqq e_s \cdot E_s = \begin{bmatrix} 5.114 \cdot 10^1 \\ 2.01 \cdot 10^2 \\ -1.095 \cdot 10^3 \\ -4.2 \cdot 10^2 \end{bmatrix} \frac{\log f}{\cos^2} \qquad f_S \coloneqq \begin{bmatrix} \min(f_g, f_{st_g}) \\ \min(f_g, f_{st_g}) \\ \min(f_g, f_{st_g}) \\ \min(f_g, f_{st_g}) \end{bmatrix} = \begin{bmatrix} 4.2 \cdot 10^1 \\ 2.01 \cdot 10^2 \\ -1.006 \cdot 10^3 \\ -4.2 \cdot 10^2 \end{bmatrix} \frac{\log f}{\cos^2}$$

$$F = \begin{bmatrix} f_{S_1} \cdot A_{\pi_{I_1}} \\ f_{S_2} \cdot A_{\pi_{I_3}} \\ f_{S_3} \cdot A_{\pi_{I_4}} \\ f_{S_4} \cdot A_{\pi_{I_4}} \end{bmatrix} = \begin{bmatrix} 2.494 \cdot 10^4 \\ 7.955 \cdot 10^3 \\ -8.671 \cdot 10^3 \\ -4.157 \cdot 10^4 \end{bmatrix} \log X_p = \begin{bmatrix} abs(y_n - d_1) \\ abs(y_n - d_2) \\ abs(y_n - d_3) \\ abs(y_n - d_4) \end{bmatrix} = \begin{bmatrix} 0.298 \\ 0.13 \\ 0.038 \\ 0.206 \end{bmatrix} m$$

$$M = \begin{bmatrix} \operatorname{abs}(F_1) \cdot X_{p_1} \\ \operatorname{abs}(F_2) \cdot X_{p_2} \\ \operatorname{abs}(F_3) \cdot X_{p_3} \\ \operatorname{abs}(F_4) \cdot X_{p_4} \end{bmatrix} = \begin{bmatrix} 7.423 \cdot 10^3 \\ 1.031 \cdot 10^3 \\ \hline 333.211 \\ 8.582 \cdot 10^3 \end{bmatrix} \log F \cdot 30$$

$$F_a = \sum_{i=1}^{b} F_i = -1.734 \cdot 10^4 \text{ kgf} \qquad F_a = 0.86 \cdot f_a \cdot b_a \cdot a = (1.971 \cdot 10^6) \text{ bgf}$$

$$F_a = 0.86 \cdot F_a \cdot b_a \cdot a = (1.971 \cdot 10^2) \text{ bg}$$

$$M_a = \sum_{i=1}^{k} M_i = (1.787 \cdot 10^4) \text{ legf} \cdot m$$

$$M_a = \sum_{i=1}^{k} M_i = (1.787 \cdot 10^4) \, kgf \cdot m$$
 $M_a = F_a \cdot \left(y_a - \frac{a}{2}\right) = (4.091 \cdot 10^4) \, kgf \cdot m$

Finalmente:

Carga Axial

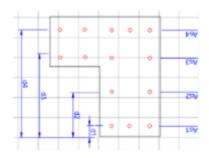
$$\phi_3 = 0.7$$

$$P_{a} = F_{a} + F_{a} = (1.797 \cdot 10^{5})$$

$$\phi_{a} \cdot P_{a} = (1.258 \cdot 10^{3})$$
 haf

Momento

$$M_a = M_s + M_s = (5.828 \cdot 10^4) \text{ bgf} \cdot \text{m}$$


$$\phi_{2} \cdot M_{2} = (4.08 \cdot 10^{4}) \text{ bgf} \cdot m$$

Falla balanceada (compresión en la parte inferior)

 $\beta 1 = 0.85$ digitar teniendo en cuenta fy

$$c_{k} = \frac{6000}{\left(6000 + f_{\parallel} \cdot \frac{cm^{2}}{\log f}\right)} \cdot d_{k} = 32.474 \text{ cm}$$

$$a = \beta 1 \cdot c_k = 27.603$$
 cm

$$A_{ad} = \begin{bmatrix} 5.938 \\ 3.959 \\ 7.917 \\ 9.897 \end{bmatrix} cm^{2} \qquad d' = \begin{bmatrix} d_{a} \\ d_{a} \\ d_{a} \\ d_{1} \end{bmatrix} = \begin{bmatrix} 55.206 \\ 38.402 \\ 21.598 \\ 4.794 \end{bmatrix} cm \qquad e_{add} = \begin{bmatrix} \frac{e_{cm}}{c_{b}} \cdot (c_{b} - d'_{a}) \\ \frac{e_{cm}}{c_{b}} \cdot (c_{b} - d'_{a}) \\ \frac{e_{cm}}{c_{b}} \cdot (c_{b} - d'_{a}) \\ \frac{e_{cm}}{c_{b}} \cdot (c_{b} - d'_{a}) \end{bmatrix} = \begin{bmatrix} 0.003 \\ 0.001 \\ -5.476 \cdot 10^{-4} \\ -0.002 \end{bmatrix}$$

$$\begin{split} f_{\text{charg}} &= a_{\text{charg}} \cdot E_{\text{c}} = \begin{bmatrix} 5.114 \cdot 10^{3} \\ 2.01 \cdot 10^{3} \\ -1.006 \cdot 10^{3} \\ -4.2 \cdot 10^{3} \end{bmatrix} \frac{\log f}{\cos^{2}} \qquad f_{\text{Sing}} := \begin{bmatrix} \min \left(f_{y}, f_{\text{ching}_{2}} \right) \\ \min \left(f_{y}, f_{\text{ching}_{2}} \right) \\ \min \left(f_{y}, f_{\text{ching}_{4}} \right) \\ \min \left(f_{y}, f_{\text{ching}_{4}} \right) \end{bmatrix} = \begin{bmatrix} 4.2 \cdot 10^{3} \\ 2.01 \cdot 10^{3} \\ -1.095 \cdot 10^{3} \\ -4.2 \cdot 10^{3} \end{bmatrix} \frac{\log f}{\cos^{2} f} \end{split}$$

$$Fixf \coloneqq \begin{bmatrix} f_{Simf_1} \cdot A_{nf_2} \\ f_{Simf_2} \cdot A_{nf_3} \\ f_{Simf_4} \cdot A_{nf_3} \\ f_{Simf_4} \cdot A_{nf_3} \end{bmatrix} = \begin{bmatrix} 4.157 \cdot 10^4 \\ 1.591 \cdot 10^4 \\ -4.336 \cdot 10^3 \\ -2.494 \cdot 10^4 \end{bmatrix} \lim_{\mathbf{x} \in \mathbb{R}} X_p \coloneqq \begin{bmatrix} \mathbf{abs} \left(y_o - d'_A \right) \\ \mathbf{abs} \left(y_o - d'_A \right) \end{bmatrix} = \begin{bmatrix} 0.298 \\ 0.13 \\ 0.038 \\ 0.206 \end{bmatrix}$$

$$\begin{aligned} \mathbf{Min} f &= \begin{bmatrix} \mathrm{abs}\left(F \sin f_{1}\right) \cdot X_{p_{1}} \\ \mathrm{abs}\left(F \sin f_{2}\right) \cdot X_{p_{2}} \\ \mathrm{abs}\left(F \sin f_{2}\right) \cdot X_{p_{3}} \\ \mathrm{abs}\left(F \sin f_{2}\right) \cdot X_{p_{4}} \end{bmatrix} = \begin{bmatrix} 1.237 \cdot 10^{4} \\ 2.062 \cdot 10^{3} \\ 166.605 \\ 6.149 \cdot 10^{3} \end{bmatrix} \log f \cdot m \end{aligned}$$

$$F_{\text{sinf}} = \sum_{i=1}^{k} Finf_i = \langle 2.62 \cdot 10^4 \rangle \text{ kgf}$$

$$M_{sinf} = \sum_{i=1}^{k} Minf_{i} = (1.975 \cdot 10^{4}) \log f \cdot m$$

$$F_{abs} = 0.85 \cdot f_a \cdot (b_1 \cdot h_2 + b_2 \cdot (a - h_2)) = (3.458 \cdot 10^4)$$

$$M_{\rm chief} = F_{\rm chief} \cdot \left(y_o - \frac{a}{2} \right) = \left(7.179 \cdot 10^4 \right) \, \, {\rm kgf} \cdot m$$

Finalmente:

Carga Axial
$$\phi_3 = 0.7$$

Momento

$$P_{\perp \perp j} = F_{\perp \perp j} + F_{\perp \perp j} = (3.74 \cdot 10^4) \text{ leff}$$
 $M_{\perp \perp j} = M_{\perp \perp j} + M_{\perp \perp j} = (9.154 \cdot 10^4) \text{ leff} \cdot m$

$$M_{
m obs}=M_{
m obs}+M_{
m obs}=(9.154\cdot 10^4)$$
 bgf·m $\phi_{
m obs}=(6.408\cdot 10^4)$ bgf·m

10. Falla fragil c > cb (Parte superior)

$$\beta 1 = 0.85$$
 digitar teniendo en cuenta fy

$$c_1 = d_2 = 38.402$$
 cm

$$a_1 = \beta 1 \cdot c_1 = 32.641$$
 cm

$$A_{af} = \begin{bmatrix} 5.938 \\ 3.959 \\ 7.917 \\ 9.897 \end{bmatrix} \text{ cm}^{2} \qquad d = \begin{bmatrix} 4.794 \\ 21.596 \\ 38.402 \\ 55.206 \end{bmatrix} \text{ cm} \qquad e_{ai} = \begin{bmatrix} \frac{c_{aa}}{c_{1}} \cdot \left(c_{1} - d_{1}\right) \\ \frac{c_{aa}}{c_{1}} \cdot \left(c_{1} - d_{2}\right) \\ \frac{c_{aa}}{c_{1}} \cdot \left(c_{1} - d_{2}\right) \\ \frac{c_{aa}}{c_{1}} \cdot \left(c_{1} - d_{2}\right) \end{bmatrix} = \begin{bmatrix} 0.003 \\ 0.001 \\ 0 \\ -0.001 \end{bmatrix}$$

$$f_{\text{aci}} = c_{\text{aci}} \cdot E_{\text{e}} = \begin{bmatrix} 5.251 \cdot 10^{3} \\ 2.626 \cdot 10^{3} \\ 0 \\ -2.626 \cdot 10^{3} \end{bmatrix} \frac{\log f}{\cos^{2}} \qquad f_{S1} = \begin{bmatrix} \min_{\text{coin}} \left(f_{\text{y}}, f_{\text{aci}_{\text{x}}} \right) \\ \min_{\text{coin}} \left(f_{\text{y}}, f_{\text{aci}_{\text{x}}} \right) \\ \min_{\text{coin}} \left(f_{\text{y}}, f_{\text{aci}_{\text{x}}} \right) \end{bmatrix} = \begin{bmatrix} 4.2 \cdot 10^{3} \\ 2.626 \cdot 10^{3} \\ 0 \\ -2.626 \cdot 10^{3} \end{bmatrix} \frac{\log f}{\cos^{2} f}$$

$$F_{1} \!\!=\! \begin{bmatrix} f_{S1_{1}} \cdot A_{sf_{1}} \\ f_{S1_{2}} \cdot A_{sf_{3}} \\ f_{S1_{4}} \cdot A_{sf_{4}} \\ f_{S1_{4}} \cdot A_{sf_{4}} \end{bmatrix} \!\!=\! \begin{bmatrix} 2.494 \cdot 10^{4} \\ 1.089 \cdot 10^{4} \\ 0 \\ -2.698 \cdot 10^{4} \end{bmatrix} \log f \qquad X_{p} \!\!=\! \begin{bmatrix} \mathrm{abs} \left(y_{n} - d_{1} \right) \\ \mathrm{abs} \left(y_{n} - d_{2} \right) \\ \mathrm{abs} \left(y_{n} - d_{3} \right) \\ \mathrm{abs} \left(y_{n} - d_{4} \right) \end{bmatrix} \!\!=\! \begin{bmatrix} 0.298 \\ 0.13 \\ 0.038 \\ 0.206 \end{bmatrix} m$$

$$M_{1} = \begin{bmatrix} \operatorname{abs} \left(F_{1_{1}}\right) \cdot X_{p_{1}} \\ \operatorname{abs} \left(F_{1_{2}}\right) \cdot X_{p_{2}} \\ \operatorname{abs} \left(F_{1_{2}}\right) \cdot X_{p_{2}} \\ \operatorname{abs} \left(F_{1_{4}}\right) \cdot X_{p_{4}} \end{bmatrix} = \begin{bmatrix} 7.423 \cdot 10^{3} \\ 1.347 \cdot 10^{3} \\ 0 \\ 5.365 \cdot 10^{3} \end{bmatrix} \operatorname{log} f \cdot \operatorname{ms}$$

$$F_{al} = \sum_{i=1}^{k} F_{1_i} = (9.849 \cdot 10^3) \text{ legf} \qquad F_{al} = 0.85 \cdot f_a \cdot b_1 \cdot a_1 = (2.831 \cdot 10^3) \text{ legf}$$

$$M_{al} = \sum_{i=1}^{k} M_{1_i} = (1.414 \cdot 10^4) \text{ legf} \cdot m \qquad M_{al} = F_{al} \cdot \left(y_a - \frac{a_1}{2}\right) = (4.261 \cdot 10^4) \text{ legf} \cdot m$$

Finalmente:

Carga Axial

$$\phi_4\!:=\!0.7$$
 $P_{a1}\!:=\!F_{a1}\!+\!F_{a1}\!=\!\left(2.424\!\cdot\!10^5
ight)\,$ bgf $\phi_4\!\cdot\!P_{a1}\!=\!\left(1.607\!\cdot\!10^5
ight)\,$ bgf

Momento

$$M_{\rm el} = M_{\rm el} + M_{\rm el} = (5.664 \cdot 10^4) \ \text{bgf} \cdot \text{m}$$

$$\phi_4 \cdot M_{\rm el} = (3.965 \cdot 10^4) \ \text{bgf} \cdot \text{m}$$

10. Falla fragil c > cb (Parte inferior)

 $\beta 1 = 0.85$ digitar teniendo en cuenta fc

 $c_1 = d_2 = 38.402$

 $a_1 = \beta 1 \cdot c_1 = 32.641$

$$A_{ag} = \begin{bmatrix} 5.938 \\ 3.959 \\ 7.917 \\ 9.897 \end{bmatrix} \text{ cm}^{2} \qquad d' = \begin{bmatrix} 55.206 \\ 38.402 \\ 21.598 \\ 4.794 \end{bmatrix} \text{ cm} \qquad e_{atag} = \begin{bmatrix} \frac{\varepsilon_{aa}}{c_{1}} \cdot \left(c_{1} - a_{1}^{a}\right) \\ \frac{\varepsilon_{aa}}{c_{1}} \cdot \left(c_{1} - a_{1}^{a}\right) \\ \frac{\varepsilon_{aa}}{c_{1}} \cdot \left(c_{1} - a_{1}^{a}\right) \\ \frac{\varepsilon_{aa}}{c_{1}} \cdot \left(c_{1} - a_{1}^{a}\right) \end{bmatrix} = \begin{bmatrix} 0.003 \\ 0.001 \\ 0 \\ -0.001 \end{bmatrix}$$

$$f_{\textit{sting}} \coloneqq c_{\textit{sting}} \cdot E_s = \begin{bmatrix} 8.251 \cdot 10^3 \\ 2.626 \cdot 10^3 \\ 0 \\ -2.626 \cdot 10^3 \end{bmatrix} \frac{\textit{lagf}}{\textit{cm}^2} \qquad f_{\textit{Sting}} \coloneqq \begin{bmatrix} min. \left(f_y, f_{\textit{sting}_2} \right) \\ min. \left(f_y, f_{\textit{sting}_2} \right) \\ min. \left(f_y, f_{\textit{sting}_2} \right) \\ min. \left(f_y, f_{\textit{sting}_2} \right) \end{bmatrix} = \begin{bmatrix} 4.2 \cdot 10^3 \\ 2.626 \cdot 10^3 \\ 0 \\ -2.626 \cdot 10^3 \end{bmatrix} \frac{\textit{lagf}}{\textit{cm}^2}$$

$$F_{1inj} \coloneqq \begin{bmatrix} f_{S1inf_1} \cdot A_{nf_4} \\ f_{S1inf_2} \cdot A_{nf_3} \\ f_{S1inf_4} \cdot A_{nf_3} \\ f_{S1inf_4} \cdot A_{nf_3} \end{bmatrix} = \begin{bmatrix} 4.157 \cdot 10^4 \\ 2.079 \cdot 10^4 \\ 0 \\ -1.559 \cdot 10^4 \end{bmatrix} \lim_{\substack{k \neq j \\ 0 \\ -1.559 \cdot 10^4}} X_p \coloneqq \begin{bmatrix} abs\left(y_o - d'_4\right) \\ abs\left(y_o - d'_3\right) \\ abs\left(y_o - d'_3\right) \\ abs\left(y_o - d'_1\right) \end{bmatrix} = \begin{bmatrix} 0.298 \\ 0.13 \\ 0.038 \\ 0.206 \end{bmatrix}_{133}$$

$$M_{\text{hinf}} \coloneqq \begin{bmatrix} \text{abs}\left(F_{\text{hinf}_1}\right) \cdot X_{p_1} \\ \text{abs}\left(F_{\text{hinf}_2}\right) \cdot X_{p_2} \\ \text{abs}\left(F_{\text{hinf}_3}\right) \cdot X_{p_2} \\ \text{abs}\left(F_{\text{hinf}_4}\right) \cdot X_{p_4} \end{bmatrix} = \begin{bmatrix} 1.237 \cdot 10^4 \\ 2.694 \cdot 10^9 \\ 0 \\ 3.219 \cdot 10^9 \end{bmatrix} \log f \cdot m$$

$$F_{alimf} = \sum_{k=1}^{k} F_{16nf_{i}} = (4.676 \cdot 10^{4}) \text{ kgf}$$

$$M_{skinf} = \sum_{i=1}^{h} M_{kinf_i} = \langle 1.829 - 10^4 \rangle \text{ leff-m}$$

$$F_{abing} = 0.85 \cdot f_a \cdot (b_1 \cdot h_2 + b_3 \cdot (a - h_3)) = (3.458 \cdot 10^4) \text{ legf}$$

$$M_{climf} = F_{climf} \cdot \left(y_o - \frac{a_1}{2} \right) = \left(6.807 \cdot 10^4 \right) \log f \cdot m$$

Finalmente:

Carga Axial

Momento

$$\phi_{A} = 0.7$$

$$M_{\text{object}} = M_{\text{object}} + M_{\text{object}} = (8.126 \cdot 10^4) \text{ left m}$$

$$P_{\text{nlim}} = F_{\text{slim}} + F_{\text{clim}} = (3.926 \cdot 10^4) \text{ bgf} \quad \phi_4 \cdot M_{\text{nlim}} = (5.696 \cdot 10^4) \text{ bgf} \cdot m$$

$$\phi_4 \cdot M_{\text{min}} = (5.696 \cdot 10^4) \, \text{kg/} \cdot \text{m}$$

$$\phi_4 \cdot P_{\text{withf}} = (2.748 \cdot 10^4)$$
 kg/

11. Falla dúctil c < cb (Parte superior)

$$\beta 1 = 0.85$$
 digitar teniendo en cuenta fy

$$c_2 = d_2 = 21.598$$
 cm

$$a_2 = \beta 1 \cdot c_2 = 18.358$$

$$A_{aq} = \begin{bmatrix} 5.938 \\ 3.959 \\ 7.917 \\ 9.897 \end{bmatrix} cm^{2} \qquad d = \begin{bmatrix} 4.794 \\ 21.598 \\ 38.402 \\ 55.206 \end{bmatrix} cm \qquad e_{ab} = \begin{bmatrix} \frac{e_{aa}}{c_{2}} \cdot \left(c_{1} - d_{1}\right) \\ \frac{e_{aa}}{c_{2}} \cdot \left(c_{2} - d_{2}\right) \\ \frac{e_{aa}}{c_{2}} \cdot \left(c_{2} - d_{3}\right) \\ \frac{e_{aa}}{c_{2}} \cdot \left(c_{2} - d_{3}\right) \end{bmatrix} = \begin{bmatrix} 0.002 \\ 0 \\ -0.002 \\ -0.006 \end{bmatrix}$$

$$f_{ab} = c_{ab} \cdot E_{a} = \begin{bmatrix} 4.668 \cdot 10^{3} \\ 0 \\ -4.668 \cdot 10^{3} \\ -9.337 \cdot 10^{3} \end{bmatrix} \frac{kgf}{con^{2}} \qquad f_{S2} = \begin{bmatrix} \min\left(f_{y}, f_{ad_{1}}\right) \\ \min\left(f_{y}, f_{ad_{1}}\right) \\ \min\left(-f_{y}, -f_{ad_{2}}\right) \\ \min\left(-f_{y}, -f_{ad_{2}}\right) \end{bmatrix} = \begin{bmatrix} 4.2 \cdot 10^{3} \\ 0 \\ -4.2 \cdot 10^{3} \\ -4.2 \cdot 10^{3} \end{bmatrix} \frac{kgf}{con^{2}}$$

$$F_{2} = \begin{bmatrix} f_{S1_{1}} \cdot A_{sf_{1}} \\ f_{S2_{2}} \cdot A_{sf_{2}} \\ f_{S2_{3}} \cdot A_{sf_{3}} \\ f_{S2_{4}} \cdot A_{sf_{4}} \end{bmatrix} = \begin{bmatrix} 2.494 \cdot 10^{4} \\ 0 \\ -3.325 \cdot 10^{4} \\ -4.167 \cdot 10^{4} \end{bmatrix} \log f \qquad X_{p} = \begin{bmatrix} \operatorname{abs} \left(y_{n} - d_{1} \right) \\ \operatorname{abs} \left(y_{n} - d_{2} \right) \\ \operatorname{abs} \left(y_{n} - d_{3} \right) \\ \operatorname{abs} \left(y_{n} - d_{4} \right) \end{bmatrix} = \begin{bmatrix} 0.298 \\ 0.13 \\ 0.038 \\ 0.206 \end{bmatrix}$$

$$M_{2} = \begin{bmatrix} \operatorname{abs} \left(F_{2_{1}}\right) \cdot X_{p_{1}} \\ \operatorname{abs} \left(F_{2_{2}}\right) \cdot X_{p_{2}} \\ \operatorname{abs} \left(F_{2_{4}}\right) \cdot X_{p_{2}} \\ \operatorname{abs} \left(F_{2_{4}}\right) \cdot X_{p_{4}} \end{bmatrix} = \begin{bmatrix} 7.423 \cdot 10^{2} \\ 0 \\ 1.278 \cdot 10^{2} \\ 8.582 \cdot 10^{2} \end{bmatrix} \operatorname{log} f \cdot \operatorname{ma}$$

$$F_{al} = \sum_{i=1}^{k} F_{2_i} = -4.988 \cdot 10^4 \text{ kg/}$$

$$M_{\rm eff} = \sum_{i}^{h} M_{2_i} = (1.728 - 10^4) \, \, \text{kgf} \cdot \text{m}$$

$$F_{ab} = \sum_{i=1}^{n} F_{2_i} = -4.988 \cdot 10^4 \text{ legf} \qquad F_{ab} = 0.85 \cdot f_a \cdot b_b \cdot a_b = (1.311 \cdot 10^5) \text{ legf}$$

$$M_{ab} = \sum_{i=1}^{b} M_{2_i} = (1.728 - 10^4) \ \text{kgf-m}$$
 $M_{ab} = F_{ab} \cdot \left(y_a - \frac{a_2}{2} \right) = (3.327 \cdot 10^4) \ \text{kgf-m}$

Finalmente:

Carga Axial

$$\phi_5 = 0.7$$

$$P_{aa} = F_{aa} + F_{ab} = (8.12 \cdot 10^4) \text{ bgf}$$

$$\phi_5 \cdot P_{-2} = (5.684 \cdot 10^4)$$

Momento

$$M_{\rm eff} = M_{\rm eff} + M_{\rm eff} = (5.055 \cdot 10^4) \, \text{lagf} \cdot \text{m}$$

$$\phi_5 \cdot M_{ad} = (3.639 \cdot 10^4) \, kgf \cdot m$$

 $\beta 1 = 0.85$ digitar teniendo en cuenta fc

$$c_2 = d_2 = 21.598$$

$$a_2 = \beta 1 \cdot c_2 = 18.358$$

$$A_{\text{eff}} = \begin{bmatrix} 5.938 \\ 3.959 \\ 7.917 \\ 9.897 \end{bmatrix} \text{ cm}^{2} \qquad d' = \begin{bmatrix} 55.206 \\ 38.402 \\ 21.598 \\ 4.794 \end{bmatrix} \text{ cm} \qquad e_{\text{eff}} = \begin{bmatrix} \frac{\varepsilon_{\text{eff}}}{c_{2}} \cdot \left(c_{1} - d'_{4}\right) \\ \frac{\varepsilon_{\text{eff}}}{c_{2}} \cdot \left(c_{1} - d'_{3}\right) \\ \frac{\varepsilon_{\text{eff}}}{c_{2}} \cdot \left(c_{1} - d'_{3}\right) \\ \frac{\varepsilon_{\text{eff}}}{c_{2}} \cdot \left(c_{1} - d'_{3}\right) \end{bmatrix} = \begin{bmatrix} 0.002 \\ 0 \\ -0.002 \\ -0.005 \end{bmatrix}$$

$$\begin{split} f_{\text{adding}} &= c_{\text{adding}} \cdot E_s = \begin{bmatrix} 4.668 \cdot 10^3 \\ 0 \\ -4.668 \cdot 10^3 \\ -9.887 \cdot 10^3 \end{bmatrix} \frac{\log f}{\cos^2} \quad f_{\text{State}} &= \begin{bmatrix} \min \left(f_g, f_{\text{adding}_1} \right) \\ \min \left(f_g, f_{\text{adding}_2} \right) \\ \min \left(-f_g, -f_{\text{adding}_4} \right) \end{bmatrix} = \begin{bmatrix} 4.2 \cdot 10^4 \\ 0 \\ -4.2 \cdot 10^2 \\ -4.2 \cdot 10^3 \end{bmatrix} \frac{\log f}{\cos^2} \end{split}$$

$$F_{\text{Matrix}} = \begin{bmatrix} f_{\text{SMatrix}} \cdot A_{\text{efg}} \\ f_{\text{SMatrix}} \cdot A_{\text{efg}} \\ f_{\text{SMatrix}} \cdot A_{\text{efg}} \\ f_{\text{SMatrix}} \cdot A_{\text{efg}} \end{bmatrix} = \begin{bmatrix} 4.157 \cdot 10^4 \\ 0 \\ -1.653 \cdot 10^4 \\ -2.494 \cdot 10^4 \end{bmatrix} \text{ lag } \qquad X_p = \begin{bmatrix} \text{abs} \left(y_o - d'_u \right) \\ \text{abs} \left(y_o - d'_u \right) \end{bmatrix} = \begin{bmatrix} 0.298 \\ 0.13 \\ 0.038 \\ 0.206 \end{bmatrix} \text{ where } \begin{bmatrix} 0.298 \\ 0.13 \\ 0.038 \\ 0.206 \end{bmatrix}$$

$$M_{\min} = \begin{bmatrix} \min \left(F_{2 + j_1}\right) \cdot X_{p_1} \\ \min \left(F_{2 + j_2}\right) \cdot X_{p_2} \\ \min \left(F_{2 + j_3}\right) \cdot X_{p_3} \\ \min \left(F_{2 + j_4}\right) \cdot X_{p_4} \end{bmatrix} = \begin{bmatrix} 1.237 \cdot 10^4 \\ 0 \\ 638.896 \\ 5.149 \cdot 10^4 \end{bmatrix} \log f \cdot m$$

$$F_{\text{minf}} = \sum_{i=1}^{k} F_{\text{minf}_i} = -8.908 \cdot 10^{-12} \text{ kgf}$$

$$M_{shirt} = \sum_{i=1}^{h} M_{hint_i} = \langle 1.816 - 10^4 \rangle \ kgf - m$$

$$F_{abinf} = 0.85 \cdot f_a \cdot (b_1 \cdot b_2 + b_3 \cdot (a - b_3)) = (3.458 \cdot 10^3)$$

$$M_{chi_{n}f} = F_{chi_{n}f} \cdot \left(y_{o} - \frac{a_{2}}{2} \right) = \left(8.777 \cdot 10^{4} \right) \log f \cdot m$$

Finalmente:

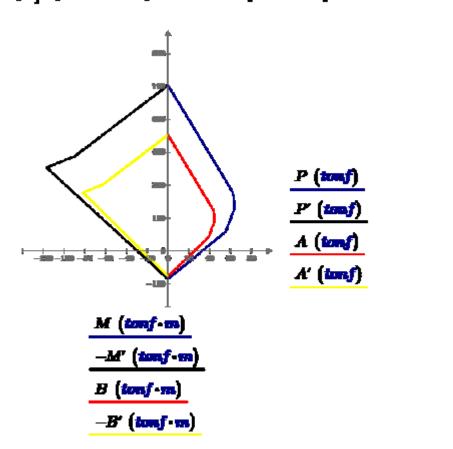
Carga Axial

Momento

$$\phi_5 = 0.7$$

$$M_{\text{comp}} = M_{\text{comp}} + M_{\text{comp}} = \langle 1.059 \cdot 10^8 \rangle \log f \cdot m$$

$$P_{abs_f} = F_{abs_f} + F_{abs_f} = (3.458 \cdot 10^4) \text{ bgf} \quad \phi_a \cdot M_{abs_f} = (7.415 \cdot 10^4) \text{ bgf} \cdot m$$


$$\phi_{5} \cdot M_{-max} = (7.415 \cdot 10^{4}) \text{ half} \cdot m$$

$$\phi_{n} \cdot P_{-mag} = (2.421 \cdot 10^{1})$$

DIAGRAMA

$$P = \begin{bmatrix} P_{\sigma} \\ P_{\pi 1} \\ P_{\pi} \\ P_{\pi 2} \\ T_{\sigma} \end{bmatrix} = \begin{bmatrix} 6.869 \cdot 10^{8} \\ 2.424 \cdot 10^{3} \\ 1.797 \cdot 10^{2} \\ 8.12 \cdot 10^{4} \\ -1.164 \cdot 10^{3} \end{bmatrix} \text{ bgf} \qquad M = \begin{bmatrix} 0 \\ M_{\pi 1} \\ M_{\pi} \\ M_{\pi 2} \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 5.664 \cdot 10^{4} \\ 5.055 \cdot 10^{4} \\ 5.055 \cdot 10^{4} \\ 5.055 \cdot 10^{4} \\ 5.055 \cdot 10^{4} \end{bmatrix} \text{ bgf} \qquad M = \begin{bmatrix} 0 \\ \phi_{4} \cdot M_{\pi 1} \\ \phi_{5} \cdot M_{\pi} \\ \phi_{5} \cdot M_{\pi 2} \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 3.965 \cdot 10^{4} \\ 4.08 \cdot 10^{4} \end{bmatrix} \text{ bgf} \qquad B = \begin{bmatrix} 0 \\ \phi_{4} \cdot M_{\pi 1} \\ \phi_{5} \cdot M_{\pi 2} \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 3.965 \cdot 10^{4} \\ 4.08 \cdot 10^{4} \\ 4.08 \cdot 10^{4} \\ 3.539 \cdot 10^{4} \end{bmatrix} \text{ bgf} \cdot m$$

$$P = \begin{bmatrix} P_{\sigma} \\ P_{\pi 1 \text{inf}} \\ P_{\pi 2 \text{inf}} \\ P_{\pi 3 \text{inf}} \\ T_{\pi} \end{bmatrix} = \begin{bmatrix} 6.869 \cdot 10^{8} \\ 3.926 \cdot 10^{8} \\ 3.74 \cdot 10^{8} \\ 3.458 \cdot 10^{8} \\ -1.164 \cdot 10^{8} \end{bmatrix} \text{ bgf} \qquad M' = \begin{bmatrix} 0 \\ M_{\pi 1 \text{inf}} \\ M_{\pi 2 \text{inf}} \\ M_{\pi 3 \text{inf}} \\ M_{\pi 4 \text{inf}} \\ M_{\pi 5 \text{inf}} \\ M_{\pi 5$$

7.3.5 Diseño de Zapata Aislada

Datos:

Columna

$$f_{e}=210 \frac{\log f}{\cos^{2}}$$

$$H=0.6 \text{ m}$$

$$F_{e}=20 \frac{\log f}{m^{2}}$$

$$F_{D}=41.115 \text{ tourf}$$

$$F_{L}=16.4657 \text{ tourf}$$

$$F_{L}=18.4657 \text{ tourf}$$

$$F_{L}=1.84657 \text{ tourf}$$

$$F_{L}=1.84667 \text{ tourf}$$

1. Determinación del peralte efectivo de la zapata

$$l_{al} = 0.08 \cdot d_{a} \cdot \frac{f_{3} \cdot \frac{cm^{2}}{laf}}{\sqrt{f_{c} \cdot \frac{cm^{2}}{laf}}} = 36.866 \text{ cm}$$

$$l_{a2} = 0.004 \cdot d_{a} \cdot f_{3} \cdot \frac{cm^{2}}{laf} = 26.712 \text{ cm}$$

$$l_{al} = 20 \text{ cm}$$

$$l_{c} = 20 \text{ cm}$$

$$l_{c} = Round \left(\max \left(l_{al}, l_{al}, l_{al} \right), 10 \text{ cm} \right) = 0.4 \text{ m}$$

$$d = lc = 0.4 \text{ m}$$

$$H_{ac} = d + 0.1 \text{ m} = 0.5 \text{ m}$$

2. Esfuerzo Neto del Suelo

$$\sigma_N = \sigma_{\text{main}} - H_{\text{pin}} \circ \gamma_{\text{constant}} - H_{\text{pin}} \circ \gamma_{\text{main}} - H_{\text{sup}} \circ \gamma_{\text{constant}} = 17.84 \frac{\text{torse}}{\text{m}^2}$$

3. Dimensiones de la zapata

$$A_{\frac{m}{2}} = \frac{P_D + P_L}{\sigma_N} = 3.228 \text{ m}^2$$

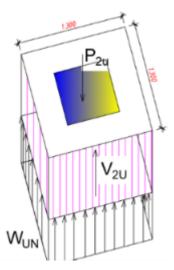
$$T = \sqrt{A_{mp}} + \frac{H - B}{2} = 1.947 \text{ ms}$$

$$T=T+5$$
 cm=2 m

$$S = \sqrt{A_{max}} - \frac{H-B}{2} = 1.647$$
 we

$$S = \text{Round}(S, 5 \text{ cm}) = 1.65 \text{ m}$$

4. Verificación por Punzonamiento


(11-33)
$$V_C = 0.53 \left(1 + \frac{2}{\beta}\right) \sqrt{f_C^2} \ bo \ d$$

(11-34)
$$Vc = 0,27 \left(\frac{\cos d}{bo} + 2\right) \sqrt{f'c} \ bo \ d$$

(11-35)
$$V_C = 1,06 \sqrt{f_C^2} \ bo \ d$$

$$\beta = \frac{H}{B} = 2$$

 $\alpha = 40$ Depende si es centrada, esquinada

$$b_0 = 2 \cdot (B+d) + 2 \cdot (H+d) = 3.4 \text{ m}$$

Perímetro de la zona critica

$$A_0 = (B+d) \cdot (H+d) = 0.7 \text{ m}^2$$

Área de la zona critica

$$\phi V_{\rm el} = 0.85 \cdot 0.53 \cdot \left(1 + \frac{2}{\beta}\right) \cdot \sqrt[2]{f_{\rm in} \cdot \frac{\log f}{\cos^2}} \cdot b_0 \cdot d = 195.739 \ tom f$$

$$\phi V_{\rm eff} \! \coloneqq \! 0.86 \cdot 0.27 \cdot \left(2 + \frac{\alpha \cdot d}{b_0} \right) \cdot \sqrt[2]{f_n^* \cdot \frac{\log f}{\cos^2}} \cdot b_0 \cdot d \! = \! 884.842 \, \, \tan f$$

$$\phi V_{\rm eff} = 0.86 \cdot 1.06 \cdot \sqrt[2]{f_{\rm e}^2 \cdot \frac{\log f}{\cos^2}} \cdot b_0 \cdot d = 195.739 \text{ tour}$$

$$\phi V_e = min(\phi V_{el.}, \phi V_{el.}, \phi V_{el.}) = 195.739$$
 touf

$$P_U = 1.4 \cdot P_D + 1.7 \cdot P_L = 85.553$$
 tous

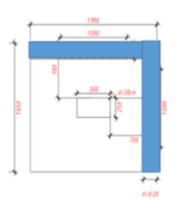
$$V_{U} = P_{U} - W_{UV} \cdot A_{0} = 61.767 \text{ ton } f$$

$$Respuesto1 :=$$
 if $V_{U} \le \phi V_{o}$ $=$ $\|$ "Es correcto el peralte de la sapata" else $=$ $\|$ "Se necesita sumentar el peralte"

Respuesta 1 = "Es currecto el peralte de la sapata"

4. Verificación por Cortante

-En la Dirección mayor "T"


$$\phi V_{C1} = 0.85 \cdot 0.53 \cdot \sqrt[2]{f_s \cdot \frac{\log f}{\cos^2}} \cdot T \cdot d = 57.57 \text{ tour} f$$

Determinación de Vud1

$$L_1 = \frac{S-B}{2} = 0.7 \text{ m}$$

$$m_1 = l_1 - d = 0.3 \text{ m}$$

$$W_{\rm DN} = 33.98 \, \frac{\rm tonf}{m^2}$$

$$V_{-1} \leftarrow W_{DN} \cdot T \cdot m_1 = 20.888$$
 223 f

$$Respuesto2 = if V_{min} < \phi V_{C1}$$
 \parallel "No requiere açaro de reformo transversal"

else

 \parallel "Requiere acero de reformo transversal"

Respuesta2 = "No requiere açaro de refuerzo transvensal"

-En la Dirección menor "S"

$$\phi V_{C2} = 0.85 \cdot 0.53 \cdot \sqrt[3]{f_s \cdot \frac{\log f}{\cos^2}} \cdot S \cdot d = 48.935 \text{ tourf}$$

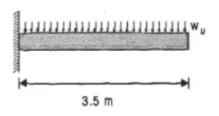
Determinación de Vud2

$$L_{\rm d}\!=\!\frac{T\!-\!H}{2}\!=\!0.7~\rm m$$

$$V_{-1} \leftarrow W_{ON} \cdot S \cdot m_1 = 17.33$$
 touf

Respuesto
$$3 = \text{if } V_{=0} < \phi V_{C2}$$

| "No requiere açaro de reformo transversal"


else
| "Requiere acaro de reformo transversal"

Respuesta3 = "No requiere acero de refuerzo transversal"

4. Diseño de Acero por Flexión

Dirección transversal

$$M_{\rm nl} = W_{\rm UN} \cdot T \cdot \frac{l_{\rm nl}^2}{2} = 16.65 \text{ tonf} \cdot m$$

Cálculo del "a" asociado al rectángulo equivalente de esfuerzos del bloque de Whitney

$$\phi_1 = 0.9$$
 Assumin = 0.0018 • T • H___ = 18 cm²

$$a_1 = d - \sqrt[3]{d^2 - 2 \cdot \frac{M_{vd}}{\phi_1 \cdot 0.85 \cdot f_a \cdot T}} = 1.193$$
 cm

Cálculo del área de acero (As)

SE TRABAJA CON EL ACERO MINIMO

$$A_{ab} = \frac{M_{a1}}{\phi_1 \cdot f_y \cdot \left(d - \frac{a_1}{2}\right)} = 10.141 \text{ cm}^2$$

₱ 5/8 @ 0.20 m

Dirección longitudinal

$$M_{\rm eff} = W_{\rm UN} \cdot S \cdot \frac{{l_{\rm eff}}^2}{2} = 14.153 \ tourf \cdot m$$

Armin =
$$0.0018 \cdot 8 \cdot H_{-} = 15.3$$
 cm²

Cálculo del "a" asociado al rectángulo equivalente de esfuerzos del bloque de Whitney

$$\phi_1 = 0.9$$

$$a_2 = d - \sqrt[3]{d^2 - 2 \cdot \frac{M_{ed}}{\phi_1 \cdot 0.85 \cdot f_a \cdot S}} = 1.193$$
 cm

Cálculo del área de acero (As)

$$A_{ab} = \frac{M_{ab}}{\phi_1 \cdot f_y \cdot \left(d - \frac{a_y}{2}\right)} = 8.62 \text{ cm}^2$$

Se trabaja con el acero mínimo

7.3.6 Diseño de Zapata Conectada

1. Datos de Cargas

9	Columna 1	<u>1</u>		Columna	2
Pm=	16.52	Ton	Pm=	32.64	Ton
Pv=	7.73	Ton	Pv=	7.53	Ton
Direcc	ión Longi	tudinal	Direc	ción Long	itudinal
Mmx=	0.1	Ton - m	Mmx=	0.5	Ton - m
Mvx=	8.1	Ton - m	Mvx=	2.4	Ton - m
Psx=	7.9	Ton	Psx=	12.9	Ton
Msx=	2.9	Ton - m	Msx=	3.8	Ton - m
Direcc	ción Trans	sversal	Direc	ción Trans	sversal
Mmy=	0.2	Ton - m	Mmy=	0.1	Ton - m
Mvy=	0.5	Ton - m	Mvy=	0.5	Ton - m
Psy=	1.9	Ton	Psy=	5.4	Ton
Msy=	1.9	Ton - m	Msy=	2.6	Ton - m

2. Verificación de Cargas

✓ <u>1ra Verificación (Sin Sismo)</u>

Obtenemos un área tentativa para la Zapata 1

A tentativa = 1.76 m2

S1 1.10 m T1 2.10 m A1 2.3 m2

Excen= 0.40 m

Volado X= 0.70 Volado Y= 1.70

Obtenemos las reacciones:

$$R1 = P1 + \frac{P1*e}{L} - \frac{M1 + M2}{L} \qquad \text{R1= } \ \, 24.71 \ \, \text{Ton}$$

$$R2 = P2 - \frac{P1 * e}{L} - \frac{M1 + M2}{L}$$
 R2= 34.66 Ton

Para la Zapata N°1

$$q1 = \frac{R1 * PP}{T * S} + \frac{6 * My}{S * T^2}$$
 q1 = 12.10 Ton/m2 < 16.54 Ton/m2 CUMPLE

$$q2 = \frac{R1 * PP}{T * S} - \frac{6 * My}{S * T^2}$$
 q2 = 10.37 Ton/m2 < 16.54 Ton/m2 CUMPLE

Para la Zapata N°2

A Tentativa = 2.55 m²

$$q1 = \frac{R2 * PP}{T * S} + \frac{6 * My}{T * S^2}$$
 q1= 10.08 Ton/m2 < 16.54 Ton/m2 CUMPLE

$$q2 = \frac{R2 * PP}{T * S} - \frac{6 * My}{T * S^2}$$
 q2= 9.08 Ton/m2 < 16.54 Ton/m2 CUMPLE

✓ 2da Verificación (Con Momentos de Sismo en la Dirección Longitudinal – Antihorario)

$$R1 = P1 + \frac{P1 * e}{L} - \frac{M1 + M2}{L}$$
 R1 = 17.01 Ton

$$R2 = P2 - \frac{P1 * e}{L} - \frac{M1 + M2}{L}$$
 R2 = 23.90 Ton

Para la Zapata N°1

$$q1 = \frac{R1*PP}{T*S} + \frac{6*My}{S*T^2}$$
 q1= 8.60 Ton/m2 < 16.54 Ton/m2 CUMPLE

$$q2 = \frac{R1 * PP}{T * S} - \frac{6 * My}{S * T^2}$$
 q2= 6.87 Ton/m2 < 16.54 Ton/m2 CUMPLE

Para la Zapata Nº2

$$q1 = \frac{R2*PP}{T*S} + \frac{6*My}{T*S^2}$$
 q1= 7.10 Ton/m2 < 16.54 Ton/m2 CUMPLE

$$q2 = \frac{R2*PP}{T*S} - \frac{6*My}{T*S^2}$$
 q2= 6.11 Ton/m2 < 16.54 Ton/m2 CUMPLE

✓ 3ra Verificación (Con Momentos de Sismo en la Dirección Longitudinal – Horario

$$R1 = P1 + \frac{P1 * e}{I} - \frac{M1 + M2}{I}$$
 R1 = 30.63 Ton

$$R2 = P2 - \frac{P1 * e}{I} - \frac{M1 + M2}{I}$$
 R2 = 43.64 Ton

Para la Zapata Nº1

$$q1 = \frac{R1 * PP}{T * S} + \frac{6 * My}{S * T^2}$$
 q1= 14.79 Ton/m2 < 16.54 Ton/m2 CUMPLE

$$q2 = \frac{R1 * PP}{T * S} - \frac{6 * My}{S * T^2}$$
 q2= 13.06 Ton/m2 < 16.54 Ton/m2 CUMPLE

Para la Zapata Nº2

$$q1 = \frac{R2*PP}{T*S} + \frac{6*My}{T*S^2}$$
 q1= 12.56 Ton/m2 < 16.54 Ton/m2 CUMPLE

$$q2 = \frac{R2 * PP}{T * S} - \frac{6 * My}{T * S^2}$$
 q2= 11.56 Ton/m2 < 16.54 Ton/m2 CUMPLE

✓ 4ta Verificación (Con Momentos de Sismo en la Dirección Transversal)

De igual manera trabajaremos con las reacciones de la primera verificación aumentando el Axial y Momento del eje Y.

$$R1 = P1 + \frac{P1 * e}{L} - \frac{M1 + M2}{L}$$
 R1 = 24.71 Ton

$$R2 = P2 - \frac{P1 * e}{L} - \frac{M1 + M2}{L}$$
 R2 = 34.66 Ton

Para la Zapata Nº1

$$q1 = \frac{R1*PP}{T*S} + \frac{6*My}{S*T^2}$$
 q1= 15.31 Ton/m2 < 16.54 Ton/m2 CUMPLE

$$q2 = \frac{R1*PP}{T*S} - \frac{6*My}{S*T^2}$$
 q2= 8.88 Ton/m2 < 16.54 Ton/m2 CUMPLE

Para la Zapata Nº2

$$q1 = \frac{R2*PP}{T*S} + \frac{6*My}{T*S^2} \qquad \text{q1= 13.73 Ton/m2 < 16.54 Ton/m2 CUMPLE}$$

$$q2 = \frac{R2*PP}{T*S} - \frac{6*My}{T*S^2} \qquad \text{q2=} \quad 8.41 \; \; \text{Ton/m2} \; \; < \; 16.54 \; \; \text{Ton/m2} \quad \; \text{CUMPLE}$$

Datos de Entrada

	Columna 1	<u>l</u>		Columna	2
S ₁	0.3	m	52	0.6	m
t_1	0.6	m	t ₂	0.3	m
P_{1D}	16.52	Tonf	P_{2D}	32.64	Tonf
$\mathbf{P}_{1\mathbf{L}}$	7.73	Tonf	P_{2L}	7.53	Tonf
σ_{s}	20	Tonf/m2			
S/C	100	Kgf/m2			
f'c	210	Kgf/cm2			
fy	4200	Kgf/cm2			
γc	2.4	Tonf/m3			
γs	1.8	Tonf/m3			
Hf	1.6	m			
Le	3.6	m			

1) Esfuerzo Neto

 σ_N 16.54 Tonf/m2

Cargas de servicio

P1	24.25	Tonf
P2	40.17	Tonf
Pt	64.42	Tonf

2) Dimensionamiento (Zapata 1 - Exterior)

A_1	1.76	m2	
S1	1.00	m	Darle un valor
T1	1.76	m	1.80 m
A_1	1.80	m2	

3) Dimensionamiento (Viga de Conexión)

Hv	0.70	m	0.70	m
Bv	0.60	m		
dv	0.64	m		

Calculo de R1 y R2

Wv 1.01 Tonf/m R1 29.04 Tonf R2 39.16 Tonf

4) Recalculo de Dimensionamiento (Zapata 1 - Exterior)

A₁ 2.11 m2 S1 1.10 m T1 1.92 m 2.10 m A₁ 2.31 m2

5) Dimensionamiento (Zapata 2 - Interior)

 A2
 2.49
 m2

 S2
 1.73
 m
 1.90
 m

 T2
 1.43
 m
 2.00
 m

 A2
 3.80
 m2

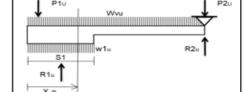
6) Diseño (Viga de Conección)

Cargas Amplificadas

P1u 36.27 Tonf P2u 58.50 Tonf Wvu 1.41 Tonf/m

Calculo de R1u y W1u

Calculo de R2u y W2u


R1u 43.23 Tonf R2u 56.83 Tonf W1u 39.30 Tonf/m W2u 29.91 Tonf/m

Calculo del Momento Máximo

$$Vx = (W1u - Wvu) Xo - P1U = 0$$

Xo 0.96 m

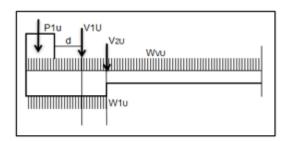
$$Mumax = (W1u - Wvu)\frac{Xo^{2}}{2} - P1U\left(Xo - \frac{s1}{2}\right)$$

Mumax -11.92

Ecuación cuadrática para el área de refuerzo: $\left(\frac{\varphi f_y^2}{1.7f_c^2b}\right){A_s}^2-\left(\varphi f_yd\right)A_s+M_u=0 \dots (ec4)$

: factor de reducción por flexión (0.90)

 M_u : Momento último en la sección f_y : fluencia del acero de refuerzo (4200kgf/cm²)


m²) A

 f_c' : resistencia del concreto b : ancho de la sección A_s : área de refuerzo d : peralte efectivo

(4200kgt/cm-)

k1	741.18				
k2	241920.00				Usar
Mu	1191972.03				
Asup	5.00	cm2	10.14	Usar Amin	4 Ø 3/4"
Ainf	2.50	cm2	10.14	Usar Amin	4 Ø 3/4"
Amin	10.14	cm2			

Diseño por Corte

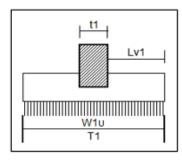
$$V1U = (W1U - WVU)(s1 + d) - P1U \label{eq:V1U}$$

V1u -0.66 Tonf Cumple

$$V2U = (W1U - WVU) * S1 - P1U$$

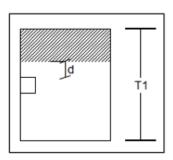
V2u 5.41 Tonf Cumple

$$\varphi Vc = 0.85 * 0.53 \sqrt{f'c} * b * d$$


φVc 25.07 Tonf

Debido a que se cumple con la relación , solamente es necesario colocar estribos de montaje.

Usar 1 Ø 3/8": 1 @ 0.05, Rsto @ 0.30 m


7) Diseño (Zapata 1 - Exterior)

Verificación (Flexion)

$$d = \sqrt{\frac{Mu1}{Ø * f'c * b * \omega 1(1 - 0.59\omega 1)}}$$
d1 0.17 m

Verificación (Cortante por flexion)

$$W1U = \frac{R1U}{T1}$$

W1u

20.58 Tonf/m

$$\phi Vc = 0.85 * 0.53 \sqrt{f'c} * b * d$$

$$Mu_1 = \frac{W_{1u} * l_{v1}^2}{2}$$

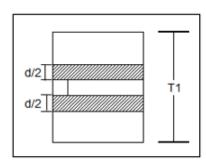
Mu1

 $\rho 1$

5.79 Tonf-m2 VU1 = (Lv - d) * W1u

0.17 m

0.25 m


0.35 m

$$\omega 1 = 2 \rho 1 \frac{fy}{f'c}$$

ω1 0.097

0.002

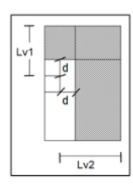
Diseño por Punzonamiento

$$\varphi Vc = 0.85*1.06\sqrt{f'c}*bo*d$$

φVc 71.81 Tonf

$$W1U = \frac{R1U}{T1 * S1}$$

Tonf/m2 W1u 18.71


Cumple

$$VU1 = P1u - W1u (t1 + d) S1$$

Vu1 18.77 Tonf

Diseño por Cortante

En la dirección S

$$\phi Vc = 0.85 * 0.53 \sqrt{f'c} * b * d$$
 ϕVc 17.95 Tonf

Vu1

$$Vu1 = Wu1 \; (l_{v1} - d) \; \mathrm{S1}$$

10.29

Cumple

En la dirección T

$$\phi Vc = 0.85 * 0.53 \sqrt{f'c} * b * d$$
 ϕVc

34.27 Tonf

$$\forall {\tt u1} = Wu1 \ (l_{v2} - d) \ {\tt T1}$$

Vu1

21.61 Tonf

Tonf

Cumple

Diseño por Flexion

Ecuación cuadrática para el área de refuerzo:

$$\left(\frac{\varphi f_y^2}{1.7 f_c' b}\right) A_s^2 - (\varphi f_y d) A_s + M_u = 0 \dots (ec4)$$

: factor de reducción por flexión (0.90)

 f_c' : resistencia del concreto

M_{tt}: Momento último en la sección

: ancho de la sección

fy : fluencia del acero de refuerzo (4200kgf/cm²)

A_s : área de refuerzo d : peralte efectivo

k1 404.28 k2 94500.00 Mu 578946.02 6.30 As

cm2 Amin 6.93 cm2

6.93 **Usar Amin**

En la Dirección S

Usando	Ø 1/2"	
Area	1.29	cm2
Diametro	1.27	cm

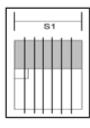
Varillas 5.37 unid

> s 18.75 cm

6 Ø 1/2" @ 0.15 m Usar

13.23 Amin cm2

En la Dirección T


Usando	Ø 1/2"	
Area	1.29	cm2
Diametro	1.27	cm

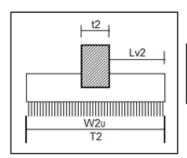
Varillas 10.26 unid

> S 19.37

11 Ø 1/2" @ 0.15 m Usar

cm

6.00 unid

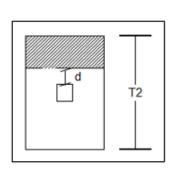

18.00 cm

11.00 unid

19.00 cm

8) Diseño (Zapata 2 - Interior)

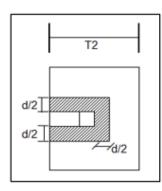
Verificación (Flexion)

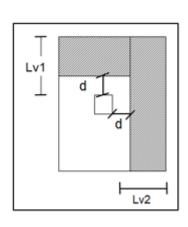


$$d = \sqrt{\frac{Mu2}{\emptyset * f'c * b * \omega 2(1 - 0.59\omega 2)}}$$

d2 0.18 m

R2UW2U =W2u 28.42 Tonf/m


Verificación (Cortante por flexion)


 $\phi Vc = 0.85 * 0.53 \sqrt{f'c} * b * d$

Γ	W ₂ * 1 ²				VU2 = ($(l_v - d)$ W	≧u
	$Mu_2 = \frac{W_{2u} * l_{v2}^2}{2}$	Mu2	10.26	Tonf-m2	d2	0.16	m
	$\rho 2 = \frac{0.7\sqrt{f'c}}{fy}$	02	0.002		d2	0.25	m
	fy = -fy	μz	0.002		Hzap	0.35	m
	$\omega 2 = 2 \rho 2 \frac{f y}{f' c}$	ω2	0.097				

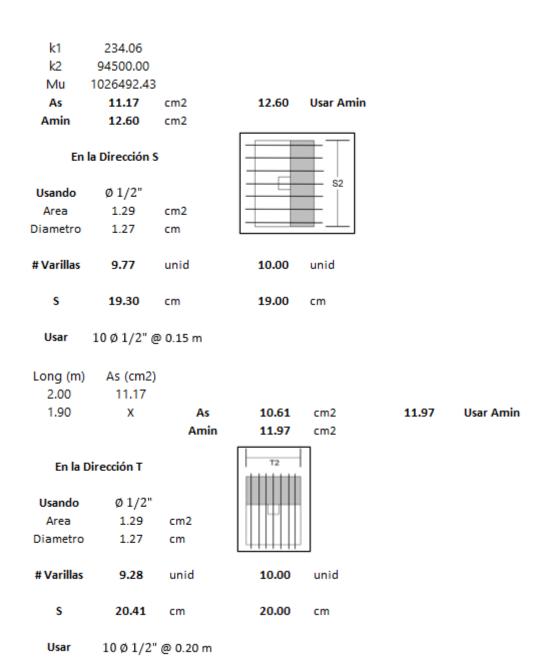
Diseño por Punzonamiento

Diseño por Cortante

En la dirección S

$$\phi Vc = 0.85 * 0.53 \sqrt{f'c} * b * d$$
 ϕVc 31.01 Tonf $VU2 = Wu2 (lv1 + d) S2$ Vu1 11.37 Tonf

Cumple


En la dirección T

$$\phi Vc = 0.85 * 0.53 \sqrt{f'c} * b * d$$
 ϕVc 32.64 Tonf $VU2 = Wu2 (lv2 + d) T2$ $vu1$ 17.95 Tonf

Cumple

Diseño por Flexion

Ecuación cuadrática para el área de refuerzo: $\left(\frac{\varphi f_y^2}{1.7 f_c' b}\right) A_s^2 - \left(\varphi f_y d\right) A_s + M_u = 0 \dots (ec4)$ φ : factor de reducción por flexión (0.90) $f_c' : \text{resistencia del concreto}$ $M_u : \text{Momento último en la sección}$ b : ancho de la sección $f_y : \text{fluencia del acero de refuerzo (4200kgf/cm²)}$ $A_s : \text{área de refuerzo}$ d : peralte efectivo

Ver representación gráfica en el plano E-2

7.3.7 Diseño de Escalera

1. Predimensionamiento

Paso: P = 0.30 m

Contrapaso: CP = 0.15 m

Espesor de Garganta: $t = \frac{LL}{25-20} = < 0.22 - 0.18 > = 20 \text{ cm}$

hm = t + a

 $a = \frac{P}{2} sen \phi$

$$\Phi = arct\left(\frac{CP}{P}\right) = arct\left(\frac{15}{30}\right) = 27^{\circ}$$

$$hm = t + \frac{P}{2} sen \, \Phi$$

$$hm = 20 + \frac{30}{2}sen\ 27^{\circ} = 26.81 = 27\ cm$$

2. Metrado de Cargas

Descanso

Carga Muerta

Peso Piso Terminado = 100 kg/m 2 x 1.8 m = 180 kg/m

Carga Viva

$$S/C = 400 \text{ kg/m} 2 \text{ x } 1.8 \text{ m} = 720 \text{ kg/m}$$

Rampa

Carga Muerta

Peso Propio (Pasos) = 2400 kg/m3 x 1.8 m x 0.07m= 302.40 kg/m

Peso Piso Terminado = 100 kg/m 2 x 1.8 m = 180 kg/m

Carga Viva

$$S/C = 400 \text{ kg/m} 2 \text{ x } 1.8 \text{ m} = 720 \text{ kg/m}$$

a) <u>DISEÑO PARA TRAMO 1</u>

1. Verificación por Cortante

$$Vu \leq \phi Vc$$

$$\phi \text{ Vc} = 0.9 \text{ x } 0.53 \sqrt{210} \text{ x } 180 \text{ x } 17 = 23.50 \text{ Ton}$$

Como se puede ver en los gráficos de cortantes no existe un valor que sea mayor a φ Vc.

$$3.57 \le 23.50$$
 CUMPLE

$$5.54 \le 23.50$$
 CUMPLE

$$3.76 \le 23.50$$
 CUMPLE

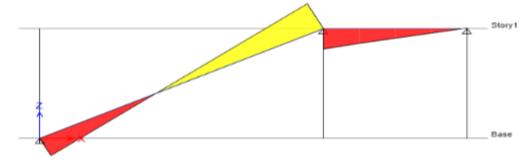


Ilustración 3. Gráfico de la fuerza cortante en la escalera

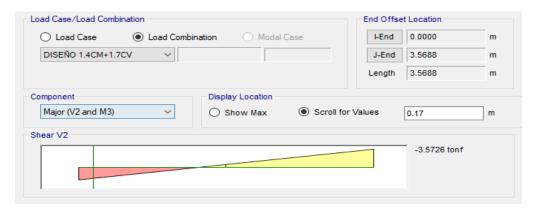


Ilustración 4. Gráfico de la fuerza cortante en la escalera

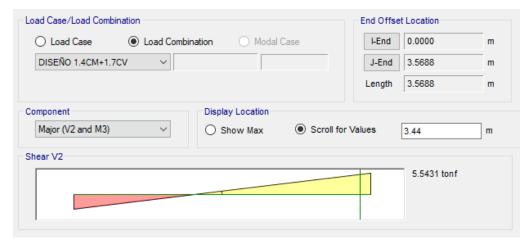


Ilustración 5. Gráfico de la fuerza cortante en la escalera

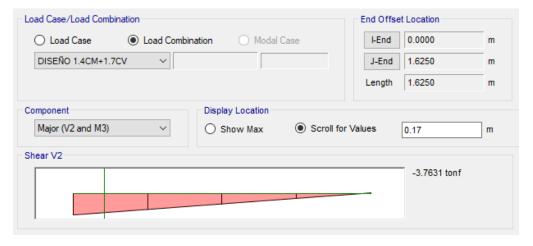


Ilustración 6. Gráfico de la fuerza cortante en la escalera

2. Distribución de Acero

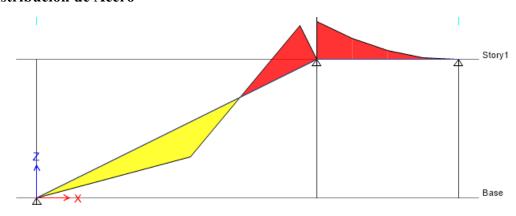


Ilustración 7. Gráfico de momentos en la escalera

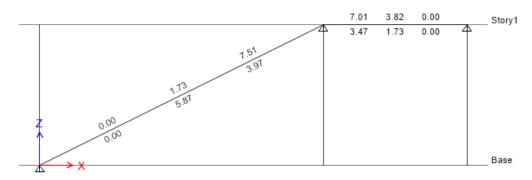


Ilustración 8. Distribución de área de acero en la escalera

 $As \min = 0.0018 \times 180 \times 17 = 5.51 \text{ cm}$

Diseño de Acero Longitudinal

Acero inferior (+)

$$As = 5.87 cm2$$

Usando Varillas 3/8"

$$\# Varillas = \frac{5.87}{0.71} = 8.26 = 9 unid$$

$$S = \frac{180 - 2x4 + 0.953}{9 - 1} = 21.62 = 20 \ cm$$

ф 3/8" @ 20 cm

Acero superior (-)

$$As = 7.51 cm2$$

Usando Varillas 3/8"

$$\# Varillas = \frac{7.51}{0.71} = 10.58 = 11 unid$$

$$S = \frac{180 - 2x4 + 0.953}{11 - 1} = 17.29 = 15 \ cm$$

ф 3/8" @ 15 cm

Diseño de Acero Transversal

$$Ast = 0.0018 \times 180 \times 20 = 6.48 \text{ cm}$$

Usando Varillas 3/8"

$$Varillas = \frac{6.48}{0.71} = 9.13 = 10$$
 unid

$$S = \frac{180 - 2x4 + 0.953}{10 - 1} = 19.22 = 15 \ cm$$

φ 3/8" @ 15 cm

b) DISEÑO PARA TRAMO 2

1. Verificación por Cortante

$$Vu \leq \phi Vc$$

$$\phi \text{ Vc} = 0.9 \times 0.53 \sqrt{210} x 180 x 17 = 23.50 Ton$$

Como se puede ver en los gráficos de cortantes no existe un valor que sea mayor a φ Vc.

 $0.03 \le 23.50$ CUMPLE

 $3.93 \le 23.50$ CUMPLE

 $5.19 \le 23.50$ CUMPLE

 $4.03 \le 23.50$ CUMPLE

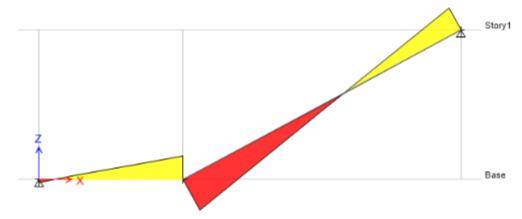


Ilustración 9. Gráfico de diagrama de cortantes

Ilustración 10. Fuerza cortante en la escalera

Ilustración 11. Fuerza cortante en la escalera

Ilustración 12. Fuerza cortante en la escalera



Ilustración 13. Fuerza cortante en la escalera

3. Distribución de Acero

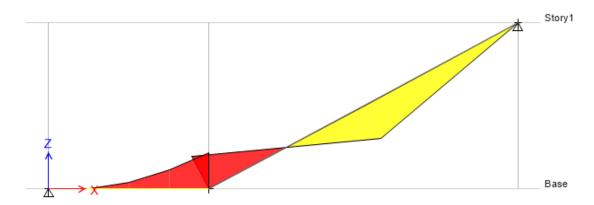


Ilustración 14. Grafica de momentos en la escalera

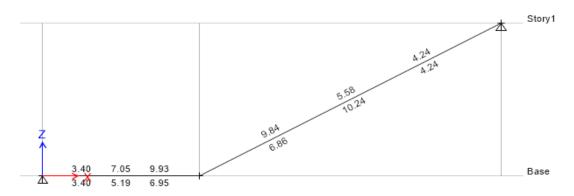


Ilustración 15. Grafica de distribución de áreas de acero

 $As \min = 0.0018 \times 180 \times 17 = 5.51 \text{ cm}$

Diseño de Acero Longitudinal

Acero inferior (+)

$$As = 10.24 cm2$$

Usando Varillas 1/2"

$$\# Varillas = \frac{10.24}{1.29} = 7.94 = 8 unid$$

$$S = \frac{180 - 2x4 + 1.270}{8 - 1} = 24.75 = 20 \ cm$$

ф 1/2" @ 20 cm

Acero superior (-)

$$As = 9.93 cm2$$

Usando Varillas 1/2"

$$Varillas = \frac{9.93}{1.29} = 8.64 = 9$$
 unid

$$S = \frac{180 - 2x4 + 1.270}{9 - 1} = 21.66 = 20 \ cm$$

$$\varphi$$
 1/2" @ 20 cm

Diseño de Acero Transversal

$$Ast = 0.0018 \ x \ 180 \ x \ 20 = 6.48 \ cm2$$

Usando Varillas 3/8"

$$\# Varillas = \frac{6.48}{0.71} = 9.13 = 10 \ unid$$

$$S = \frac{180 - 2x4 + 0.953}{10 - 1} = 19.22 = 15 \ cm$$

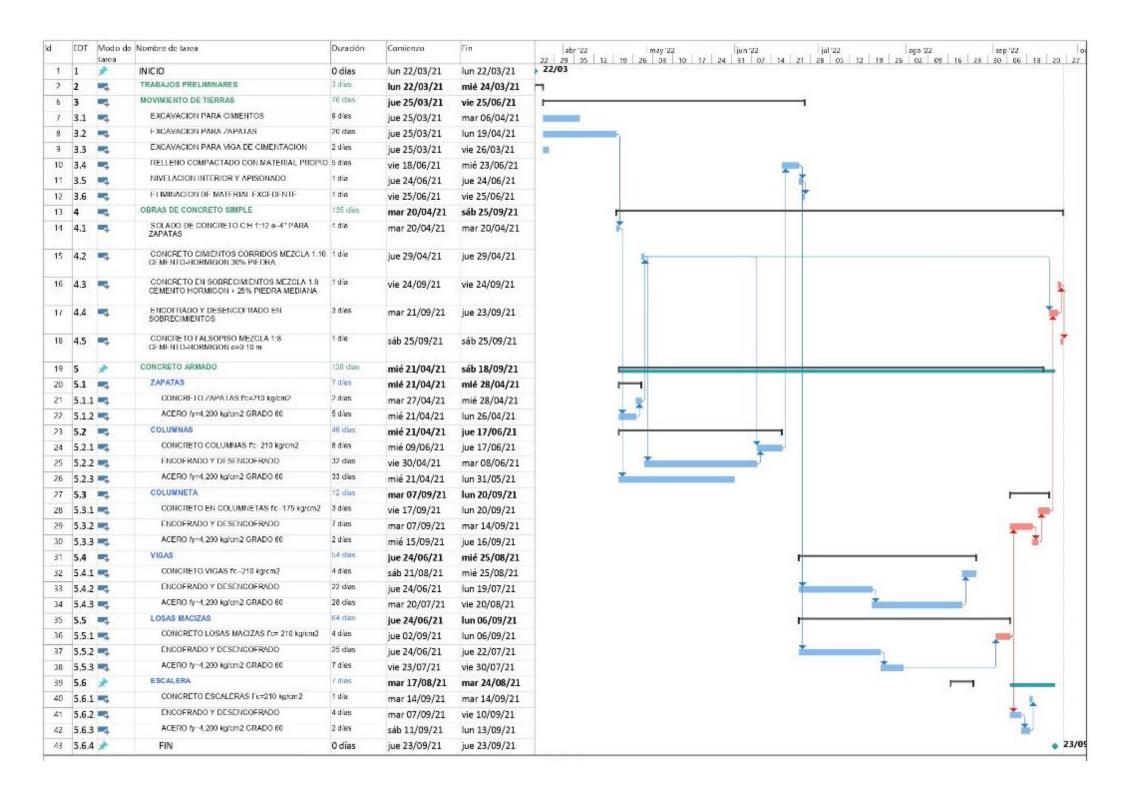
$$\varphi$$
 3/8" @ 15 cm

Ver representación gráfica en el plano E-1

8. Evaluación de impactos (Matriz de riesgo)

Tabla 11. Niveles de Probabilidad

	Niveles de probabilidad				
Muy probable	Es casi seguro que el evento a suceder				
probable	Es más probable a que el evento suceda a que no suceda				
eventual	Es más probable a que el evento NO suceda a que suceda				
remota	Posibilidad rara a que suceda				


Tabla 12. Niveles de Impacto

	Niveles de Impacto
CRÍTICO	Es casi seguro que el evento a suceder
MAYOR	Es más probable a que el evento suceda a que no suceda
MODERADO	Es más probable a que el evento NO suceda a que suceda
MENOR	Posibilidad rara a que suceda
INSIGNIFICANTE	Posibilidad de que casi nunca suceda

Tabla 13. Evaluación final de riesgo

CATEGORÍA		Evaluació	n final de Ries	go		Total, de Riesgo
	Muy bajo	bajo	medio	alto	critico	identificados
SEGURIDAD			2	2		4
TECNICOS				5	1	6
OPERATIVOS				1	1	2
LEGALES				1		1
TOTAL	0	0	2	9	2	13

		IDENTIFICACIÓN DE LOS RIESGOS		ANALISIS DEL I	ESCENARIO	ANALISIS DE PROBABILIDAD		ANALISI	S DE IMPAC	сто	
CODIGO	CATEGORIA/ AREA	Evento de Riesgo	Causa	Consecuencia	controles / acciones para mitigar	Probabilidad de Ocurrencia	Financiero	Salud y seguridad	Social	Legal	Mayor criticidad
P-1	SEGURIDAD	Personal infectado de Covid 19	Falta de plan y medidas Sanitarias de Covid	Desequilibrio de personal, mayor Probabilidad de contagio a los personales	Elaborar un plan sanitario Covid	Muy probable	Insignificante	Mayor			Alto
P-2	TÉCNICO	Paralización de obra	Incumplimiento en el avance de acuerdo con el cronograma	Realizar cronograma de avance acelerado	Cronograma bien elaborado	Probable	Mayor		Moderado		Alto
P-3	SEGURIDAD	Golpes-Caidas	Falta de señalización, uso inadecuado de EPPS	Accidentemuerte	Señalización correcta en obra – control de uso de EPPS en los personales – Charlas de seguridad laboral	Eventual		Menor			Medio
P-4	SEGURIDAD	Cortaduras-Atropellamiento	Falta de equipo con guardas	Accidente	Revisión de guardas en equipos menores	Remoto		Menor			Medio
P-5	TECNICOS	Sobre Costos si no se definen bien los Costos de seguridad según la Norma Sanitaria	Los costos considerados en seguridad son muy mínimos	Mayor costo	Preparación de planes de seguridad con legislación actual	Probable	Crítico				Muy alto
P-6	TECNICOS	Fractura o patología en la columna o viga de concreto	No se encuentra diseños de mezclas adecuados	Reclamo del cliente	Solicitar diseño, en el caso no haiga se debe solicitar realizarlo según las especificaciones del diseño acompañado de una memoria de cálculo	Eventual	Menor			Mayor	Alto
P-7	TECNICOS	Escasa información sobre los estudios del suelo.	Muestras de Calicatas no representativas	Mal diseño de cimientos	Solicitar estudios de suelos.	Remoto	Moderado			Mayor	Alto
P-8	TECNICOS	Sobrecosto por actualización de precios de la Mano de Obra, materiales, subcontratos, alquiler de equipo etc.	Debido a la implementación de seguridad frente al Covid, El costo de los recursos se ha incrementado	Aumento en el presupuesto	Actualizar con fórmula polinómica	Probable	Mayor				Alto
P-9	TECNICOS	Sobrecosto por tipo de cambio	crecimiento de precio del dólar	Aumento en el presupuesto	Actualizar con fórmula polinómica	Probable	Mayor				Alto
P-10	TECNICOS	Mayores o menores gastos generales	Es necesario desagregar los gastos generales que el contratista ha presentado	Aumento en el presupuesto	Asignar un presupuesto extra si no se cuenta un gasto general desagregado que incluya los gastos mínimos durante su ejecución	Eventual	Mayor				Alto
P-11	OPERATIVOS	Equipos de mano de obra escaza	Alta demanda de proyectos en la zona	Paralización de obra, Ampliación de plazo	Contratar mano calificada no locales	Probable	Moderado		Critico		Muy alto
P-12	OPERATIVOS	Proveedores y Contratistas escasos para las partidas de trabajo	Alta demanda de proyectos en la zona	Paralización de obra, Ampliación de plazo	Realizar contratos externos	Probable	Moderado		Mayor		Alto
P-13	LEGALES	Multas por incumplimiento de licencias	Empezar la obra sin tener licencia de edificación	Paralización de obra	Regularizar las licencias y permisos pendientes para la continuidad de la ejecución	Eventual	Menor			Mayor	Alto

Presupuesto

Cliente Lugar	SORIANO EN PERENÉ, CHANCHAMAYO - JUNIN MUNICIPALIDAD DISTRITAL DE PERENÉ JUNIN - CHANCHAMAYO - PERENE		. C	02/11/2020
tem	Descripción	Metrado	Precio	Parcial
)1	ESTRUCTURAS			347,461.
01.01	TRABAJOS PRELIMINARES			1.412.51
)1.01.01	LIMPIEZA DEL TERRENO MANUAL	31.90	4.01	127.92
11.01.02	TRAZO, NIVELACION Y REPLANTEO PRELIMINAR	212.68	4.09	869.86
1.01.03	TRAZO, NIVELACION Y REPLANTEO DURANTE EL PROCESO	212.68	1.95	414.73
1.02	MOVIMIENTO DE TIERRAS			13,225.1
1.02.01	EXCAVACION PARA CIMIENTOS	20.05	64.19	1,287.01
1.02.02	EXCAVACION PARA ZAPATAS	110.15	64.19	7,070.53
1.02.03	EXCAVACION PARA VIGA DE CIMENTACION	3.19	64.19	204.77
1.02.04	RELLENO COMPACTADO CON MATERIAL PROPIO	79.62	40.58	3,230.98
1.02.05	NIVELACION INTERIOR Y APISONADO	187.99	6.16	1,158.02
1.02.06	ELIMINACION DE MATERIAL EXCEDENTE	59.15	4.63	273.86
1.03	OBRAS DE CONCRETO SIMPLE			6,967.13
1.03.01	SOLADO DE CONCRETO C:H 1:12 e=4" PARA ZAPATAS	18.22	28.01	510.34
)1.03.02 30	CONCRETO CIMIENTOS CORRIDOS MEZCLA 1:10 CEMENTO-HORMIGON % PIEDRA	15.33	172.81	2,649.18
)1.03.03 25	CONCRETO EN SOBRECIMIENTOS MEZCLA 1:8 CEMENTO HORMIGON + PIEDRA MEDIANA	7.66	265.99	2,037.48
1.03.04	ENCOFRADO Y DESENCOFRADO EN SOBRECIMIENTOS	28.55	56.90	1,624.50
1.03.05	CONCRETO FALSOPISO MEZCLA 1:8 CEMENTO-HORMIGON e=0.10 m	5.36	27.17	145.63
01.04	CONCRETO ARMADO			325,856.
01.04.01	ZAPATAS			19,919.2
01.04.01.01	CONCRETO ZAPATAS fc=210 kg/cm2	35.57	329.27	11,712.1
01.04.01.02	ACERO fy=4,200 kg/cm2 GRADO 60	1,011.9	8.11	8,207.16
1.04.02	COLUMNAS			116,896.
1.04.02.01	CONCRETO COLUMNAS fc=210 kg/cm2	54.97	484.10	26,610.9
11.04.02.02	ENCOFRADO Y DESENCOFRADO	441.44	56.90	25,117.9
1.04.02.03	ACERO fy=4,200 kg/cm2 GRADO 60	8,035.4	8.11	65,167.2
01.04.03	COLUMNETA			8,346.84
01.04.03.01	CONCRETO EN COLUMNETAS fc=175 kg/cm2	3.96	302.22	1,196.79
01.04.03.02	ENCOFRADO Y DESENCOFRADO	84.48	56.90	4,806.91
01.04.03.03	ACERO fy=4,200 kg/cm2 GRADO 60	288.92	8.11	2,343.14
01.04.04	VIGAS			93,251.2
01.04.04.01	CONCRETO VIGAS fc=210 kg/cm2	54.30	364.45	19,789.6
01.04.04.02	ENCOFRADO Y DESENCOFRADO	296.20	56.90	16,853.7
)1.04.04.03	ACERO fy=4,200 kg/cm2 GRADO 60	6,980.0	8.11	56,607.8
01.04.05	LOSAS MACIZAS			78,473.8
01.04.05.01	CONCRETO LOSAS MACIZAS fc= 210 kg/cm2	77.67	364.45	28,306.8
01.04.05.02	ENCOFRADO Y DESENCOFRADO	647.92	56.90	36,866.6
01.04.05.03	ACERO fy=4,200 kg/cm2 GRADO 60	1,640.0	8.11	13,300.4
01.04.06	ESCALERA	0.00	050.50	8,969.02
01.04.06.01	CONCRETO ESCALERAS f'c=210 kg/cm2	9.32	353.58	3,295.37
11.04.06.02	ENCOFRADO Y DESENCOFRADO	52.20	56.90	2,970.18
11.04.06.03	ACERO fy=4,200 kg/cm2 GRADO 60	333.35	8.11	2,703.47
	COSTO DIRECTO GASTOS GENERALES 10%			347,461.24
	UTILIDAD (10%)			34,746.12
	SUBTOTAL			416,953.48
	PLAN COVID			19,110.37
	IGV			75,051.63
			=======	34,746.12

Página: 1

86

S10

Presupuesto

0103001

Análisis de precios unitarios

DISEÑO ESTRUCTURAL DE CONCRETO ARMADO DEL PABELLÓN Nº 03 DE LA INSTITUCIÓN EDUCATIVA RICARDO PALMA SORIANO

Partida 01	1.01.01 (01010 ⁻	1030202-0103001-01)	LIMPIEZA DEL TERRENO MANUAL				
•	(0.000	1000202 0100001 01,	LIMITED SEE TERRETO IN NOVE	Costo unitario	directo por:	m2	4.01
Código	Descripción Recurso			Unidad	Cantidad	Precio S/.	Parcial S/.
0101010003	OPERARIO	Mano de Ob		hh	0.0200	23.44	0.47
0101010005	PEON			hh	0.2000	16.76	3.35
							3.82
000404000		Equipos		0/		0.40	0.40
0301010006	HERRAMIENTAS MANUALES	S		%mo		0.19	0.19 0.19
Partida 01	1.01.02 (010101	1020106-0103001-01)	TRAZO, NIVELACION Y REPLANTEO PRELIM	IINAR			
				Costo unitario	directo por:	m2	4.09
Código	Descripción Recurso			Unidad	Cantidad	Precio S/.	Parcial S/.
0404040003	0050400	Mano de Ob		hh	0.0160	23.44	0.38
0101010003 0101010004	OPERARIO OFICIAL			hh	0.0160	18.53	0.30
0101010004	PEON			hh	0.0480	16.76	0.80
0101010000	LON				0.0 700	10.70	1.48
		Materiales					
02041200010003	CLAVOS PARA MADERA CO	N CABEZA DE 2"		kg	0.0400	6.50	0.26
02130300010001	YESO BOLSA 28 kg			bol	0.0300	20.00	0.60
0231010003	MADERA ROBLE NACIONAL	•		p2	0.2500	5.00	1.25
0292010001	CORDEL			m	0.6000	0.05	0.03
		Faurinaa					2.14
03010000020002	NIVEL ÓPTICO	Equipos		hm	0.0160	9.99	0.16
0301000011	TEODOLITO			hm	0.0160	15.00	0.24
0301010006	HERRAMIENTAS MANUALES	S		%mo		0.07	0.07
							0.47
Partida 01	1.01.03 (010101	1020107-0103001-01)	TRAZO, NIVELACION Y REPLANTEO DURAN	TE EL PROCESO			
				Costo unitario	directo por:	m2	1.95
Código	Descripción Recurso	Mana da Ok		Unidad	Cantidad	Precio S/.	Parcial S/.
0101010003	OPERARIO	Mano de Ob		hh	0.0032	23.44	0.08
0101010004	OFICIAL			hh	0.0160	18.53	0.30
0101010005	PEON			hh	0.0320	16.76	0.54
							0.92
		Materiales					
02041200010001	CLAVOS PARA MADERA CO	N CABEZA DE 1"		kg	0.0200	6.50	0.13
0213060001	OCRE			kg 	0.0050	8.50	0.04
0292010001	CORDEL			m	0.2000	0.05	0.01 0.18
		Equipos					0.10
03010000020002	NIVEL ÓPTICO	Equip05		hm	0.0320	9.99	0.32
0301000011	TEODOLITO			hm	0.0320	15.00	0.48
0301010006	HERRAMIENTAS MANUALES	S		%mo		0.05	0.05
							0.85
Partida 01	1.02.01 (010104	4010310-0103001-01)	EXCAVACION PARA CIMIENTOS				
				Costo unitario	directo por:	m3	64.19
Código	Descripción Recurso			Unidad	Cantidad	Precio S/.	Parcial S/.
		Mano de Ob				1 1000 07.	i ai dal Or.
0101010003	OPERARIO			hh	0.3200	23.44	7.50
							E2 C2
0101010005	PEON			hh	3.2000	16.76	53.63
				hh	3.2000	16.76	61.13
0101010005	PEON	Equipos			3.2000		61.13
				hh %mo	3.2000	3.06	

S10

agina:

2

87

Análisis de precios unitarios

Presupuesto	0103001	DISENO ESTRUCTURAL DE CO	DNCRETO ARMADO DEL PABELLÓN	I N° 03 DE LA INST	ITUCIÓN EDUCAT	IVA RICARDO PALN	IA SORIANO
Partida	01.02.02	(010104010311-0103001-01)	EXCAVACION PARA ZAPATAS				
		(,		Costo uni	tario directo por:	m3	64.19
Código	Descripción Recurso			Unidad	Cantidad	Precio S/.	Parcial S/.
0101010003	OPERARIO	Mano de O	bra	hh	0.3200	23.44	7.50
0101010005	PEON			hh	3.2000	16.76	53.63
_							61.13
0301010006	HERRAMIENTAS I	Equipos MANUALES)	%mo		3.06	3.06
							3.06
Partida	01.02.03	(010104010312-0103001-01)	EXCAVACION PARA VIGA DE CIMENT	TACION			
	01102.00	(010104010012 0100001 01)	EXOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOT		tario directo por:	m3	64.19
Código	Descripción Recurso			Unidad	Cantidad	Precio S/.	Parcial S/.
0101010003	OPERARIO	Mano de O	bra	hh	0.3200	23.44	7.50
0101010005	PEON			hh	3.2000	16.76	53.63
_							61.13
0301010006	HERRAMIENTAS I	Equipos	3	%mo		3.06	3.06
0301010000	HEKKAIWIEN I AS I	WANUALES		701110		0.00	3.06
Partida	01.02.04	(010104020201-0103001-01)	RELLENO COMPACTADO CON MATE		tario directo por:	m3	40.58
Código	Descripción Recurso			Unidad	Cantidad	Precio S/.	Parcial S/.
_		Mano de O	bra	L.L.	0.0000	20.44	4.00
0101010003 0101010005	OPERARIO PEON			hh hh	0.2000 2.0000	23.44 16.76	4.69 33.52
_	1 2011						38.21
		Equipos	3				
0301010006 0301470001001	HERRAMIENTAS I	MANUALES		%mo und	0.0230	1.91 20.00	1.91 0.46
0301470001001	12 PISON MANUAL			unu	0.0230	20.00	2.37
				_			
Partida	01.02.05	(010104040101-0103001-01)	NIVELACION INTERIOR Y APISONADO		tario directo por:	m2	6.16
Código	Descripción Recurso			Unidad	Cantidad	Precio S/.	Parcial S/.
0404040000	0050:5:5	Mano de O	bra	hh	0.0040		0.00
0101010003 0101010004	OPERARIO OFICIAL			hh hh	0.0040 0.0400	23.44 18.53	0.09 0.74
	J. IOIAL			hh	0.2400	16.76	4.02
0101010004	PEON						
	PEON						4.85
0101010005		Materiale	s		0.0100	6 50	
		Materiale Adera con Cabeza de 3"	s	kg	0.0100	6.50	4.85 0.07 0.07
0101010005					0.0100	6.50	0.07
0101010005 - 0204120001000 0301010006	05 CLAVOS PARA MA	ADERA CON CABEZA DE 3" Equipos MANUALES		kg %mo		0.24	0.07 0.07 0.24
0101010005	05 CLAVOS PARA MA	ADERA CON CABEZA DE 3" Equipos		kg	0.0100		0.07 0.07

Análisis de precios unitarios

resupuest	0103001	DISEÑO ESTRUCTURAL DE C	ONCRETO ARMADO DEL PABELLÓN Nº 03 DE LA INS	STITUCIÓN EDUCAT	IVA RICARDO PALM	MA SORIANO
artida	01.02.06	(010601080501-0103001-01)	ELIMINACION DE MATERIAL EXCEDENTE			
			Costo u	initario directo por:	m3	4.63
ódigo	Descripción Recurs		Unidad	Cantidad	Precio S/.	Parcial S/.
101010003	OPERARIO	Mano de (D bra hh	0.0016	23.44	0.04
101010004	OFICIAL		hh	0.0160	18.53	0.30
101010005	PEON		hh	0.0160	16.76	0.27
						0.61
		Equipo	s			
01010006	HERRAMIENTA		%mo		0.02	0.02
301160001	CARGADOR FF	RONTAL	hm	0.0160	150.00	2.40
30122000400	001 CAMION VOLQ	UETE DE 15 m3	hm	0.0160	100.00	1.60
						4.02
ırtida	01.03.01	(010306020702-0103001-01)	SOLADO DE CONCRETO C:H 1:12 e=4" PARA ZAPATAS			
			Costo u	initario directo por:	m2	28.01
ódigo	Descripción Recurs		Unidad	Cantidad	Precio S/.	Parcial S/.
101010003	OPERARIO	Mano de C	pora hh	0.2000	23.44	4.69
101010003	OFICIAL		hh	0.1000	18.53	1.85
01010004	PEON		hh	0.6000	16.76	10.06
01010005	PEON	Markada		0.0000	10.70	16.60
07020001	HODMICON	Material	es m3	0.0900	28.00	2.52
207030001 213010001	HORMIGON	OTLAND TIDO L (40 F I)	bol	0.2700	21.32	5.76
13010001	CEMENTO POR	RTLAND TIPO I (42.5 kg)	boi	0.2700	21.32	8.28
		Facility	_			0.20
01010006	LIEDDAMIENTA	Equipo	s %mo		0.83	0.83
01010006	HERRAMIENTA		hm	0.1000	23.00	2.30
01290003	MEZCLADORA	DE CONCRETO	Ш	0.1000	20.00	3.13
ırtida	01.03.02	(010105010110-0103001-01)	CONCRETO CIMIENTOS CORRIDOS MEZCLA 1:10 CEMEN	NTO-HORMIGON 30% F	PIEDRA	
		,	Costo u	nitario directo por:	m3	172.81
ódigo	Descripción Recurs		Unidad	Cantidad	Precio S/.	Parcial S/.
01010003	OPERARIO	Mano de (D bra hh	0.3200	23.44	7.50
101010004	OFICIAL		hh	0.6400	18.53	11.86
01010005	PEON		hh	2.5600	16.76	42.91
	2	•• · · ·				62.27
07010006	PIEDRA GRANI	Material DE DE 8"	es m3	0.5000	30.00	15.00
07030001	HORMIGON	-	m3	0.8300	28.00	23.24
		RTLAND TIPO I (42.5 kg)	bol	2.9000	21.32	61.83
13010001	OLIVILIATO I OI					100.07
?13010001		F :	_			
	UEDD AME: T	Equipo			2.44	2.44
213010001 801010006	HERRAMIENTA	AS MANUALES	%mo	0.2200	3.11	3.11
				0.3200	3.11 23.00	3.11 7.36 10.47

S10

Presupuesto

0103001

Página:

Análisis de precios unitarios

DISEÑO ESTRUCTURAL DE CONCRETO ARMADO DEL PABELLÓN Nº 03 DE LA INSTITUCIÓN EDUCATIVA RICARDO PALMA SORIANO

	,				
Partida 01	.03.03 (010105010205-0103001-01)	CONCRETO EN SOBRECIMIENTOS MEZCLA 1:8 CEMENTO	HORMIGON + 25% P	m3	265.99
Código	Descripción Recurso	Unidad	Cantidad	Precio S/.	Parcial S/.
	Mano de O		Cantidad	Predio 5/.	Parciai 5/.
101010003	OPERARIO	hh	0.6667	23.44	15.63
101010004	OFICIAL	hh	1.3333	18.53	24.71
101010005	PEON	hh	5.3333	16.76	89.39
					129.73
	Materiale				
207010005	PIEDRA MEDIANA	m3	0.4200	28.00	11.76
207030001	HORMIGON	m3	0.8500	28.00	23.80
213010001	CEMENTO PORTLAND TIPO I (42.5 kg)	bol	3.7000	21.32	78.88
					114.44
04040000	Equipos	%mo		6.40	6.40
301010006	HERRAMIENTAS MANUALES		0.6667	6.49 23.00	6.49 15.33
301290003	MEZCLADORA DE CONCRETO	hm	0.0007	23.00	15.33 21.82
					21.02
rtida 01	.03.04 (010106010204-0103001-01)	ENCOFRADO Y DESENCOFRADO EN SOBRECIMIENTOS			
		Costo uni	tario directo por:	m2	56.90
ódigo	Descripción Recurso	Unidad	Cantidad	Precio S/.	Parcial S/.
—	Mano de O				
101010003	OPERARIO	hh	0.5714	23.44	13.39
101010004	OFICIAL	hh	0.5714	18.53	10.59
01010005	PEON	hh	0.2857	16.76	4.79 28.77
	Makadala	_			20.11
2040100010001	Materiale ALAMBRE NEGRO RECOCIDO N° 8	s kg	0.2600	6.50	1.69
2041200010001	CLAVOS PARA MADERA CON CABEZA DE 3"	kg	0.1300	6.50	0.85
231010003	MADERA ROBLE NACIONAL	p2	4.8300	5.00	24.15
.01010000	WADERA ROBLE NACIONAL	P-		0.00	26.69
	Equipos				
301010006	HERRAMIENTAS MANUALES	%mo		1.44	1.44
					1.44
artida 01	.03.05 (010105011201-0103001-01)	CONCRETO FALSOPISO MEZCLA 1:8 CEMENTO-HORMIGO	N e=0.10 m		
		Costo uni	tario directo por:	m2	27.17
ódigo	Descripción Recurso	Unidad	Cantidad	Precio S/.	Parcial S/.
	Mano de O				
		hh	0.1333	23.44	3.12
101010003	OPERARIO				4.04
101010004	OFICIAL	hh	0.0667	18.53	1.24
01010004		hh hh	0.0667 0.5333	18.53 16.76	8.94
01010004	OFICIAL PEON	hh			
01010004	OFICIAL PEON Materiale	hh S	0.5333	16.76	8.94 13.30
01010004 01010005 07030001	OFICIAL PEON Materiale HORMIGON	hh s m3	0.5333 0.1260	16.76 28.00	8.94 13.30 3.53
01010004 01010005 07030001	OFICIAL PEON Materiale	hh S	0.5333	16.76	8.94 13.30 3.53 8.06
01010004 01010005 07030001	OFICIAL PEON Materiale HORMIGON CEMENTO PORTLAND TIPO I (42.5 kg)	hh s m3 bol	0.5333 0.1260	16.76 28.00	8.94 13.30 3.53
01010004 01010005 07030001 113010001	OFICIAL PEON Materiale HORMIGON CEMENTO PORTLAND TIPO I (42.5 kg) Equipos	hh s m3 bol	0.5333 0.1260	16.76 28.00 21.32	8.94 13.30 3.53 8.06 11.59
	OFICIAL PEON Materiale HORMIGON CEMENTO PORTLAND TIPO I (42.5 kg) Equipos HERRAMIENTAS MANUALES	hh s m3 bol %mo	0.5333 0.1260 0.3780	16.76 28.00 21.32	8.94 13.30 3.53 8.06 11.59
101010004 101010005 207030001 213010001 301010006 3010600020004	OFICIAL PEON Materiale HORMIGON CEMENTO PORTLAND TIPO I (42.5 kg) Equipos HERRAMIENTAS MANUALES REGLA DE ALUMINIO DE 1 1/2"X3"X6 m	hh s m3 bol %mo und	0.5333 0.1260 0.3780 0.0010	16.76 28.00 21.32 0.67 80.00	8.94 13.30 3.53 8.06 11.59 0.67 0.08
101010003 101010004 101010005 207030001 213010001 301010006 3010600020004 301290003	OFICIAL PEON Materiale HORMIGON CEMENTO PORTLAND TIPO I (42.5 kg) Equipos HERRAMIENTAS MANUALES	hh s m3 bol %mo	0.5333 0.1260 0.3780	16.76 28.00 21.32	8.94 13.30 3.53 8.06 11.59

S10

Presupuesto

0103001

Página:

Análisis de precios unitarios

DISEÑO ESTRUCTURAL DE CONCRETO ARMADO DEL PABELLÓN Nº 03 DE LA INSTITUCIÓN EDUCATIVA RICARDO PALMA SORIANO

Part		J.JJJJ. BIOLING LOJING						
Marie	Partida 0	1.04.01.01 (010105011101-01	03001-01)	CONCRETO ZAPATAS f'c=210 kg/cm2				000
Manno de Control Manno de Co					Costo unit	ario directo por:	m3	329.27
01010100033 OPERARID OPERA	Código	Descripción Recurso			Unidad	Cantidad	Precio S/.	Parcial S/.
10101101005 1010101005 1010101005 1010101005 1010101005 1010101005 1010101005 101010101005 10101010105 10101010105 10101010105 10101010105 10101010105 10101010105 10101010105 10101010105 10101010105 10101010105 10101010105 10101010105 10101010105 1010105 101010	0101010003	OPERADIO	Mano de Ob	ra	hh	0.6400	22.44	15.00
Materials								
Materials Mate								
#EARAMEENTAS MANUALES Manuales	0101010000	LON				2.0000		
M2100100000 M210000001101010101010101010101010101010			Materiales	;				
201010001 CEMENTO PORTLAND TIPO 1 (425 kg) Equipos Equipos Marcales Mino 0.3200 2.130 3.44 3.45 3.	02070100010002	PIEDRA CHANCADA 1/2"			m3	0.5300	45.00	23.85
Part	02070200010002	ARENA GRUESA			m3	0.5200	26.00	13.52
Part	0213010001	CEMENTO PORTLAND TIPO I (42.5 kg)			bol	9.7300	21.32	207.44
Marcia								244.81
March 1,000 1,00			Equipos					
MEZCLADORA DE CONCRETO MEZCLADORA DE CONC								
Perticis								
Per tion	0301290003	MEZCLADORA DE CONCRETO			nm	0.3200	23.00	
Codign								14.69
Codign								
Codigo Descripción Recurso Unidad Cardidad Precio SJ. Parcial SJ. 01010100004 OPERARIO hñh 0.0320 23.44 0.75 0101010004 OPICIAL hñh 0.0320 18.53 0.59 Materiales 20240100010022 ALAMBRE NEGRO RECOCIDO N° 16 kg 0.0600 6.50 0.39 020440300010322 ACERO CORRUGADO 1y = 4200 kg/cm2 GRADO 60 kg 1.0700 5.90 6.31 Equipos 3001010006 HERRAMIENTAS MANUALES **Mmo 0.07 0.07 **Costo unitario directo por: m3 484.10 **Costo principal Recurso **Mmo de Obra **Dinidad **Certicad **Precio S/L **Parcial S/L 0101010003 OPERARIO **Mmo de Obra **In 16,000 2.244 37.50 0101010004 OPERARIO **In 16,000 16.76 134.08 **Costo unitario directo por: **Dinidad **Dinidad **Dinidad **Dinidad	Partida 0	1.04.01.02 (010714000001-01	03001-01)	ACERO fy=4,200 kg/cm2 GRADO 60				
Mano de Obra Man					Costo unit	ario directo por:	kg	8.11
0101101003	Código	Descripción Recurso			Unidad	Cantidad	Precio S/.	Parcial S/.
0101010001	0101010003	OPERADIO	Mano de Ob	ra	hh	0.0320	23.44	0.75
Materiales Mg 0.0600 6.50 0.39 0.2040300010032 ACERO CORRUGADO 1y = 4200 kg/cm2 GRADO 60 kg 1.0700 5.90 6.31 6.70 6.7								
Materials Mat		OFICIAL				0.0020	10.50	
Q20401000110025			Materiales	•				
ACERO CORRUGADO 1y = 4200 kg/cm2 GRADO 60 6.31 6.70	02040100010002	ALAMBRE NEGRO RECOCIDO Nº 16	matorialoc	•	kg	0.0600	6.50	0.39
Feducity			GRADO 60			1.0700	5.90	6.31
Partida MIRTAS MANUALES Mino 0.07								6.70
Partida 1.04.02.01 (010105010402-0103001-01) CONCRETO COLUMNAS Fc=210 kg/cm2 Costo unitatio directo por: m3 484.10			Equipos					
Partida 01.04.02.01 (010105010402-0103001-01) CONCRETO COLUMNAS Fc=210 kg/cm2 Costo unitario directo por: m3 M84.10 Código Descripción Recurso Unidad Cantidad Precio S/. Parcial S/. 0101010003 OPERARIO hh 1.6000 23.44 37.50 0101010004 OFICIAL hh 1.6000 18.53 29.65 0101010005 PEON hh 8.0000 16.76 134.08 Materiales Materiales 02070100011002 PEDRA CHANCADA 1/2" m3 0.5300 45.00 23.85 020702000110012 ARENA GRUESA m3 0.5200 26.00 13.52 02130110001 CEMENTO PORTLAND TIPO I (42.5 kg) bol 9.7300 21.32 207.44 Equipos Equipos %mo 10.06 10.06 0301010006 HERRAMIENTAS MANUALES %mo 10.06 9.60 0301290001 V02 VIBRADOR DE CONCRETO 4 HP 1.25" hm 0.8000 <td>0301010006</td> <td>HERRAMIENTAS MANUALES</td> <td></td> <td></td> <td>%mo</td> <td></td> <td>0.07</td> <td>0.07</td>	0301010006	HERRAMIENTAS MANUALES			%mo		0.07	0.07
Código Descripción Recurso Unidad Cantidad Precio S/. Parcial S/. 0101010003 OPERARIO hh 1.6000 23.44 37.50 0101010004 OFICIAL hh 1.6000 18.53 29.65 0101010005 PEON hh 8.0000 16.76 134.08 2070100010002 PIEDRA CHANCADA 1/2" m3 0.5300 45.00 23.85 02070200010002 ARENA GRUESA m3 0.5200 26.00 13.52 0213010001 CEMENTO PORTLAND TIPO I (42.5 kg) bd 9.7300 21.32 207.44 0301010006 HERRAMIENTAS MANUALES %mo 10.06 10.06 03012900010002 VIBRADOR DE CONCRETO 4 HP 1.25" hm 0.8000 12.00 9.60 0301290003 MEZCLADORA DE CONCRETO hm 0.8000 23.00 18.40								0.07
Código Descripción Recurso Unidad Cantidad Precio S/. Parcial S/. 0101010003 OPERARIO hh 1.6000 23.44 37.50 0101010004 OFICIAL hh 1.6000 18.53 29.65 0101010005 PEON hh 8.0000 16.76 134.08 2070100010002 PIEDRA CHANCADA 1/2" m3 0.5300 45.00 23.85 02070200010002 ARENA GRUESA m3 0.5200 26.00 13.52 0213010001 CEMENTO PORTLAND TIPO I (42.5 kg) bd 9.7300 21.32 207.44 0301010006 HERRAMIENTAS MANUALES %mo 10.06 10.06 03012900010002 VIBRADOR DE CONCRETO 4 HP 1.25" hm 0.8000 12.00 9.60 0301290003 MEZCLADORA DE CONCRETO hm 0.8000 23.00 18.40								
Código Descripción Recurso Unidad Cantidad Precio S/. Parcial S/. 0101010003 OPERARIO hh 1.6000 23.44 37.50 0101010004 OFICIAL hh 1.6000 18.53 29.65 0101010005 PEON hh 8.0000 16.76 134.08 2070100010002 PIEDRA CHANCADA 1/2" m3 0.5300 45.00 23.85 02070200010002 ARENA GRUESA m3 0.5200 26.00 13.52 0213010001 CEMENTO PORTLAND TIPO I (42.5 kg) bd 9.7300 21.32 207.44 0301010006 HERRAMIENTAS MANUALES %mo 10.06 10.06 03012900010002 VIBRADOR DE CONCRETO 4 HP 1.25" hm 0.8000 12.00 9.60 0301290003 MEZCLADORA DE CONCRETO hm 0.8000 23.00 18.40	Partida 0	1.04.02.01 (010105010402-01	03001-01)	CONCRETO COI UMNAS f'c=210 kg/cm2				
Código Descripción Recurso Mano de Obra Unidad Cantidad Precio S/. Parcial S/. 0101010003 OPERARIO hh 1.6000 23.44 37.50 0101010004 OFICIAL hh 1.6000 18.53 29.65 0101010005 PEON hh 8.0000 16.76 134.08 ***********************************	•	(0.0.000.0.02 0.	,		Cooto unit	aria diraata nari	m2	494 40
Mano de Obra Mano					Costo unit	ano unecto por.	III3	404.10
0101010003 OPERARIO hh 1.6000 23.44 37.50 0101010004 OFICIAL hh 1.6000 18.53 29.65 0101010005 PEON hh 8.0000 16.76 134.08 201.23 Materiales 02070100010002 PIEDRA CHANCADA 1/2" m3 0.5300 45.00 23.85 02070200010002 ARENA GRUESA m3 0.5200 26.00 13.52 0213010001 CEMENTO PORTLAND TIPO I (42.5 kg) bol 9.7300 21.32 207.44 Equipos 0301010006 HERRAMIENTAS MANUALES %mo 10.06 10.06 03012900010002 VIBRADOR DE CONCRETO 4 HP 1.25" hm 0.8000 12.00 9.60 0301290003 MEZCLADORA DE CONCRETO hm 0.8000 23.00 18.40	Código	Descripción Recurso			Unidad	Cantidad	Precio S/.	Parcial S/.
0101010004 0101010005 OFICIAL PEON hh 1.6000 18.53 29.65 0101010005 01010100005 PEON hh 8.0000 16.76 134.08 201.23 Materiales 02070100010002 PIEDRA CHANCADA 1/2" m3 0.5300 45.00 23.85 02070200010002 ARENA GRUESA m3 0.5200 26.00 13.52 0213010001 CEMENTO PORTLAND TIPO I (42.5 kg) bol 9.7300 21.32 207.44 Equipos 0301010006 HERRAMIENTAS MANUALES %mo 10.06 10.06 03012900010002 VIBRADOR DE CONCRETO 4 HP 1.25" hm 0.8000 12.00 9.60 0301290003 MEZCLADORA DE CONCRETO hm 0.8000 23.00 18.40			Mano de Ob	ra	LL	4.0000	00.11	07.50
PEON								
Materiales								
Materiales 02070100010002 PIEDRA CHANCADA 1/2" m3 0.5300 45.00 23.85 02070200010002 ARENA GRUESA m3 0.5200 26.00 13.52 0213010001 CEMENTO PORTLAND TIPO I (42.5 kg) bol 9.7300 21.32 207.44 Equipos 0301010006 HERRAMIENTAS MANUALES %mo 10.06 10.06 03012900010002 VIBRADOR DE CONCRETO 4 HP 1.25" hm 0.8000 12.00 9.60 0301290003 MEZCLADORA DE CONCRETO 18.40	0101010005	PEON			1111	6.0000	10.70	
02070100010002 PIEDRA CHANCADA 1/2" m3 0.5300 45.00 23.85 02070200010002 ARENA GRUESA m3 0.5200 26.00 13.52 0213010001 CEMENTO PORTLAND TIPO I (42.5 kg) bol 9.7300 21.32 207.44 Equipos 0301010006 HERRAMIENTAS MANUALES %mo 10.06 10.06 03012900010002 VIBRADOR DE CONCRETO 4 HP 1.25" hm 0.8000 12.00 9.60 0301290003 MEZCLADORA DE CONCRETO 18.40			Matarialas					201.23
02070200110002 ARENA GRUESA m3 0.5200 26.00 13.52 0213010001 CEMENTO PORTLAND TIPO I (42.5 kg) bol 9.7300 21.32 207.44 Equipos 0301010006 HERRAMIENTAS MANUALES %mo 10.06 10.06 03012900010002 VIBRADOR DE CONCRETO 4 HP 1.25" hm 0.8000 12.00 9.60 0301290003 MEZCLADORA DE CONCRETO hm 0.8000 23.00 18.40	02070100010002	PIEDRA CHANCADA 1/2"	widteriales	•	m3	0.5300	45.00	23.85
0213010001 CEMENTO PORTLAND TIPO I (42.5 kg) bol 9.7300 21.32 207.44 244.81 Equipos 0301010006 HERRAMIENTAS MANUALES %mo 10.06 10.06 03012900010002 VIBRADOR DE CONCRETO 4 HP 1.25" hm 0.8000 12.00 9.60 0301290003 MEZCLADORA DE CONCRETO hm 0.8000 23.00 18.40								
244.81 Equipos 0301010006 HERRAMIENTAS MANUALES %mo 10.06 10.06 03012900010002 VIBRADOR DE CONCRETO 4 HP 1.25" hm 0.8000 12.00 9.60 0301290003 MEZCLADORA DE CONCRETO hm 0.8000 23.00 18.40								
Equipos 0301010006 HERRAMIENTAS MANUALES %mo 10.06 10.06 0301290011002 VIBRADOR DE CONCRETO 4 HP 1.25" hm 0.8000 12.00 9.60 0301290003 MEZCLADORA DE CONCRETO hm 0.8000 23.00 18.40	-2.00.0001	52E11101 5111E1110 111 01(42.5 kg)				2.7 000		
0301010006 HERRAMIENTAS MANUALES %mo 10.06 10.06 03012900010002 VIBRADOR DE CONCRETO 4 HP 1.25" hm 0.8000 12.00 9.60 0301290003 MEZCLADORA DE CONCRETO hm 0.8000 23.00 18.40			Equipos					
03012900010002 VIBRADOR DE CONCRETO 4 HP 1.25" hm 0.8000 12.00 9.60 0301290003 MEZCLADORA DE CONCRETO hm 0.8000 23.00 18.40	0301010006	HERRAMIENTAS MANUALES	-40.600		%mo		10.06	10.06
0301290003 MEZCLADORA DE CONCRETO hm 0.8000 23.00 18.40					hm	0.8000		
38.06	0301290003				hm	0.8000	23.00	18.40
								38.06

Página: 6

17.32

91

S10

Análisis de precios unitarios

Presupuesto	0103001 DISEÑO ESTRUCTURAL DE CO	NCRETO ARMADO DEL PABELLÓN N	° 03 DE LA INST	TITUCIÓN EDUCAT	IVA RICARDO PALI	MA SORIANO
Partida 01	.04.02.02 (010313090202-0103001-01)	ENCOFRADO Y DESENCOFRADO				
			Costo uni	tario directo por:	m2	56.90
Código	Descripción Recurso		Unidad	Cantidad	Precio S/.	Parcial S/.
0101010003	Mano de Ob OPERARIO	ra	hh	0.5714	23.44	13.39
101010004	OFICIAL		hh	0.5714	18.53	10.59
101010005	PEON		hh	0.2857	16.76	4.79
						28.77
	Materiales					
2040100010001	ALAMBRE NEGRO RECOCIDO N° 8		kg	0.2600	6.50	1.69
2041200010005	CLAVOS PARA MADERA CON CABEZA DE 3"		kg	0.1300	6.50	0.85
31010003	MADERA ROBLE NACIONAL		p2	4.8300	5.00	24.15
						26.69
	Equipos		0/			
01010006	HERRAMIENTAS MANUALES		%mo		1.44	1.44
						1.44
rtida 01	.04.02.03 (010714000001-0103001-01)	ACERO fy=4,200 kg/cm2 GRADO 60				
	(,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Costo uni	tario directo por:	kg	8.11
digo	Descripción Recurso		Unidad	Cantidad	Precio S/.	Parcial S/.
	Mano de Ob	ra				
01010003	OPERARIO		hh	0.0320	23.44	0.75
01010004	OFICIAL		hh	0.0320	18.53	0.59
	••					1.34
0040400040000	Materiales		ka	0.0600	6.50	0.39
040100010002	ALAMBRE NEGRO RECOCIDO Nº 16		kg ka	1.0700	5.90	6.31
040300010032	ACERO CORRUGADO fy = 4200 kg/cm2 GRADO 60		kg	1.0700	5.90	6.70
	Faurinas					0.70
01010006	Equipos		%mo		0.07	0.07
01010000	HERRAMIENTAS MANUALES		701110		0.07	0.07
						0.01
rtida 01	.04.03.01 (010105010403-0103001-01)	CONCRETO EN COLUMNETAS f'c=175 kg	g/cm2			
			Costo uni	tario directo por:	m3	302.22
odigo	Descripción Recurso		Unidad	Cantidad	Precio S/.	Parcial S/.
01010003	Mano de Ob OPERARIO	Id	hh	0.8000	23.44	18.75
101010003	OFICIAL		hh	0.4000	18.53	7.41
101010004	PEON		hh	2.4000	16.76	40.22
-						66.38
.07040004000	Materiales		2	0.5500	45.00	04.75
070100010002	PIEDRA CHANCADA 1/2"		m3	0.5500	45.00	24.75
070200010002	ARENA GRUESA		m3 bol	0.5400	26.00	14.04
13010001	CEMENTO PORTLAND TIPO I (42.5 kg)		bol	8.4300	21.32	179.73
	Funtaria					218.52
01010006	Equipos		%mo		3.32	3.32
01010006 012900010002	HERRAMIENTAS MANUALES		hm	0.4000	3.32 12.00	3.32 4.80
012900010002	VIBRADOR DE CONCRETO 4 HP 1.25" MEZCLADORA DE CONCRETO		hm	0.4000	23.00	9.20
0.1200000	WEZSEADONA DE SONONETO			0.7000	20.00	17.32

Presupuesto

0103001

Página:

Análisis de precios unitarios

DISEÑO ESTRUCTURAL DE CONCRETO ARMADO DEL PABELLÓN Nº 03 DE LA INSTITUCIÓN EDUCATIVA RICARDO PALMA SORIANO

ida 01	1.04.03.02	(010313090202-0103001-01)	ENCOFRADO Y DESENCOFRADO				
				Costo uni	tario directo por:	m2	56.90
igo	Descripción Recurso			Unidad	Cantidad	Precio S/.	Parcial S/.
	00504510	Mano de Ol	bra	hh	0.5714	23.44	13.39
)1010003)1010004	OPERARIO			hh	0.5714	18.53	10.59
1010004	OFICIAL PEON			hh	0.2857	16.76	4.79
1010005	PEUN			1111	0.2037	10.70	28.77
		Materiale	e				20.77
40100010001	ALAMBRE NEGRO		5	kg	0.2600	6.50	1.69
11200010005		ADERA CON CABEZA DE 3"		kg	0.1300	6.50	0.85
1010003	MADERA ROBLE			p2	4.8300	5.00	24.15
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	WINDLINGTOBLE	NACIONAL					26.69
		Equipos	•				
010006	HERRAMIENTAS			%mo		1.44	1.44
							1.44
a 0 1	1.04.03.03	(010714000001-0103001-01)	ACERO fy=4,200 kg/cm2 GRADO 60				
				Costo uni	tario directo por:	kg	8.11
go	Descripción Recurso	*****	h	Unidad	Cantidad	Precio S/.	Parcial S/.
1010003	OPERARIO	Mano de Ol	DIA	hh	0.0320	23.44	0.75
010004	OFICIAL			hh	0.0320	18.53	0.59
							1.34
		Materiale	s				
0100010002	ALAMBRE NEGRO	RECOCIDO Nº 16		kg	0.0600	6.50	0.39
0300010032	ACERO CORRUG	ADO fy = 4200 kg/cm2 GRADO 60		kg	1.0700	5.90	6.31
							6.70
		Equipos	•	0/		2.27	0.0=
010006	HERRAMIENTAS	MANUALES		%mo		0.07	0.07
							0.07
a 0 ′	1.04.04.01	(010105010502-0103001-01)	CONCRETO VIGAS f'c=210 kg/cm2				
				Costo uni	tario directo por:	m3	364.45
go	Descripción Recurso			Unidad	Cantidad	Precio S/.	Parcial S/.
1010003	OPERARIO	Mano de Oi	ora	hh	0.8000	23.44	18.75
1010003	OFICIAL			hh	0.8000	18.53	14.82
010001 —	PEON			hh	4.0000	16.76	67.04
	. 20.1						100.61
		Materiale	S	2		4	**
0100010002	PIEDRA CHANCA	DA 1/2"		m3	0.5300	45.00	23.85
200010002	ARENA GRUESA			m3	0.5200	26.00	13.52
10001	CEMENTO PORTI	LAND TIPO I (42.5 kg)		bol	9.7300	21.32	207.44
							244.81
10000	HEDDALUSTICS.	Equipos	i	9/ mc		E 00	F 00
010006	HERRAMIENTAS			%mo	0.4000	5.03	5.03
200004222	VIBRADOR DE CO	NCRETO 4 HP 1.25"		hm	0.4000	12.00	4.80 9.20
		CONODETO					
2900010002 290003	MEZCLADORA DE	CONCRETO		hm	0.4000	23.00	9.2 19.0

S10

0301290003

MEZCLADORA DE CONCRETO

Página: 8

93

Análisis de precios unitarios

DISEÑO ESTRUCTURAL DE CONCRETO ARMADO DEL PABELLÓN Nº 03 DE LA INSTITUCIÓN EDUCATIVA RICARDO PALMA SORIANO Presupuesto 0103001 Partida 01.04.04.02 (010313090202-0103001-01) **ENCOFRADO Y DESENCOFRADO** Costo unitario directo por: m2 56.90 Código Descripción Recurso Unidad Cantidad Precio S/. Parcial S/. Mano de Obra hh 0.5714 0101010003 23 44 13 39 **OPERARIO** 0101010004 OFICIAL hh 0.5714 18.53 10.59 0.2857 0101010005 PEON hh 16.76 4 79 28.77 Materiales 0.2600 6.50 1.69 02040100010001 ALAMBRE NEGRO RECOCIDO Nº 8 kg 0.1300 0.85 02041200010005 CLAVOS PARA MADERA CON CABEZA DE 3" kg 6.50 p2 4.8300 5.00 24.15 0231010003 MADERA ROBLE NACIONAL 26.69 **Equipos** 0301010006 HERRAMIENTAS MANUALES %mo 1.44 1.44 1.44 01.04.04.03 Partida (010714000001-0103001-01) ACERO fy=4,200 kg/cm2 GRADO 60 8.11 Costo unitario directo por: kg Código Descripción Recurso Unidad Cantidad Precio S/. Parcial S/. Mano de Obra 0.0320 hh 23.44 0.75 0101010003 **OPERARIO** 0101010004 OFICIAL hh 0.0320 18.53 0.59 1.34 **Materiales** 0.0600 6.50 0.39 02040100010002 ALAMBRE NEGRO RECOCIDO Nº 16 kg 02040300010032 ACERO CORRUGADO fy = 4200 kg/cm2 GRADO 60 kg 1.0700 5.90 6.31 6.70 **Equipos** 0301010006 HERRAMIENTAS MANUALES %mo 0.07 0.07 0.07 Partida 01.04.05.01 (010105011803-0103001-01) CONCRETO LOSAS MACIZAS f'c= 210 kg/cm2 Costo unitario directo por: m3 364.45 Código Descripción Recurso Unidad Cantidad Precio S/. Parcial S/. Mano de Obra hh 0.8000 23.44 18.75 0101010003 **OPERARIO** 0101010004 OFICIAL hh 0.8000 18.53 14.82 hh 4.0000 16.76 67.04 0101010005 PEON 100.61 Materiales m3 0.5300 45.00 23.85 02070100010002 PIEDRA CHANCADA 1/2" 02070200010002 ARENA GRUESA m3 0.5200 26.00 13.52 0213010001 bol 9.7300 21.32 207.44 CEMENTO PORTLAND TIPO I (42.5 kg) 244.81 **Equipos** 0301010006 HERRAMIENTAS MANUALES %mo 5.03 5.03 0.4000 03012900010002 VIBRADOR DE CONCRETO 4 HP 1.25" hm 12.00 4.80

hm

0.4000

23.00

9.20 **19.03** S10

Página: 9

94

Análisis de precios unitarios

Presupuesto 0103001 DISEÑO ESTRUCTURAL DE CONCRETO ARMADO DEL PABELLÓN Nº 03 DE LA INSTITUCIÓN EDUCATIVA RICARDO PALMA SORIANO

Partida 01	.04.05.02 (010313090202-0103001-01) ENCOFRADO Y DESENCOFRADO				
		Costo un	nitario directo por:	m2	56.90
Código	Descripción Recurso	Unidad	Cantidad	Precio S/.	Parcial S/.
0101010003	Mano de Obra OPERARIO	hh	0.5714	23.44	13.39
0101010004	OFICIAL	hh	0.5714	18.53	10.59
0101010005	PEON	hh	0.2857	16.76	4.79
					28.77
	Materiales				
02040100010001	ALAMBRE NEGRO RECOCIDO N° 8	kg	0.2600	6.50	1.69
02041200010005	CLAVOS PARA MADERA CON CABEZA DE 3"	kg	0.1300	6.50	0.85
0231010003	MADERA ROBLE NACIONAL	p2	4.8300	5.00	24.15
					26.69
	Equipos				
0301010006	HERRAMIENTAS MANUALES	%mo		1.44	1.44
					1.44
Partida 01	.04.05.03 (010714000001-0103001-01) ACERO fy=4,200 kg/cm2 GRADO 60				
railiua U I	.04.05.03 (010714000001-0103001-01) ACERO fy=4,200 kg/cm2 GRADO 60	Costo un	nitario directo por:	kg	8.11
		COSIO UII	ilitario dilecto por.	kg	0.11
Código	Descripción Recurso	Unidad	Cantidad	Precio S/.	Parcial S/.
0101010003	Mano de Obra OPERARIO	hh	0.0320	23.44	0.75
0101010004	OFICIAL	hh	0.0320	18.53	0.59
	0.101/2				1.34
	Materiales				
02040100010002	ALAMBRE NEGRO RECOCIDO Nº 16	kg	0.0600	6.50	0.39
02040300010032	ACERO CORRUGADO fy = 4200 kg/cm2 GRADO 60	kg	1.0700	5.90	6.31
					6.70
	Equipos				
0301010006	HERRAMIENTAS MANUALES	%mo		0.07	0.07
					0.07
Partida 01	.04.06.01 (010105012301-0103001-01) CONCRETO ESCALERAS f´c=210 kg/cm²				
		Costo un	itario directo por:	m3	353.58
Código	Descripción Recurso	Unidad	Cantidad	Precio S/.	Parcial S/.
	Mano de Obra				
0101010003	OPERARIO	hh	0.7273	23.44	17.05
0101010004	OFICIAL	hh	0.7273	18.53	13.48
0101010005	PEON	hh	3.6364	16.76	60.95
					91.48
0007040004000	Materiales		0.5000	45.00	00.05
02070100010002	PIEDRA CHANCADA 1/2"	m3	0.5300	45.00	23.85
02070200010002	ARENA GRUESA	m3 bol	0.5200	26.00	13.52
0213010001	CEMENTO PORTLAND TIPO I (42.5 kg)	bol	9.7300	21.32	207.44
	Equipos				244.81
0301010006	Equipos HERRAMIENTAS MANUALES	%mo		4.57	4.57
0301010006	VIBRADOR DE CONCRETO 4 HP 1.25"	hm	0.3636	12.00	4.36
03012900010002	MEZCLADORA DE CONCRETO MEZCLADORA DE CONCRETO	hm	0.3636	23.00	8.36
330120000	MEEDE IDOI VI DE OURONE I O		3.0000	20.00	17.29

Página: 95

DISEÑO ESTRUCTURAL DE CONCRETO ARMADO DEL PABELLÓN Nº 03 DE LA INSTITUCIÓN EDUCATIVA RICARDO PALMA SORIANO

Análisis de precios unitarios

S10

Presupuesto

0103001

Partida 01.04.06.02 (010313090202-0103001-01) ENCOFRADO Y DESENCOFRADO Costo unitario directo por: m2 56.90 Cantidad Código Descripción Recurso Unidad Precio S/. Parcial S/. Mano de Obra hh 0.5714 23.44 13.39 0101010003 **OPERARIO** 0101010004 OFICIAL hh 0.5714 18.53 10.59 hh 0.2857 16.76 4.79 0101010005 PEON 28.77 Materiales 02040100010001 kg 0.2600 6.50 1.69 ALAMBRE NEGRO RECOCIDO Nº 8 02041200010005 0.1300 6.50 0.85 CLAVOS PARA MADERA CON CABEZA DE 3" kg 0231010003 p2 4.8300 5.00 24.15 MADERA ROBLE NACIONAL 26.69 **Equipos** %mo 1.44 1.44 0301010006 HERRAMIENTAS MANUALES 1.44 Partida 01.04.06.03 (010714000001-0103001-01) ACERO fy=4,200 kg/cm2 GRADO 60 Costo unitario directo por: 8.11 kg Código Descripción Recurso Unidad Cantidad Precio S/. Parcial S/. Mano de Obra hh 0.0320 23.44 0.75 0101010003 OPERARIO OFICIAL 0101010004 hh 0.0320 18.53 0.59 1.34 Materiales 0.0600 6.50 02040100010002 0.39 ALAMBRE NEGRO RECOCIDO Nº 16 kg ACERO CORRUGADO fy = 4200 kg/cm2 GRADO 60 02040300010032 kg 1.0700 5.90 6.31 6.70 **Equipos** 0301010006 HERRAMIENTAS MANUALES %mo 0.07 0.07 0.07

9. Modelación de la información de la infraestructura

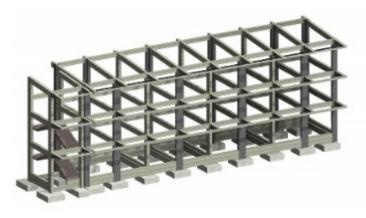


Ilustración 16. Grafica tridimensional de la estructuración de la Institución educativa.

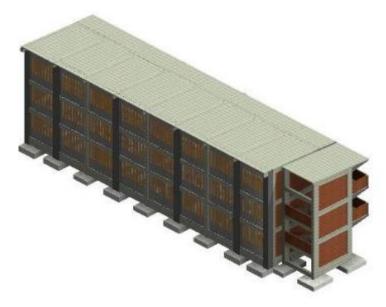


Ilustración 17. Modelo tridimensional vista posterior de la Institución educativa

Ilustración 18. Modelo tridimensional de vista frontal de la Institución educativa

10. Análisis de resultados y conclusiones

Se realizó el estudio de diseño en concreto armado de los elementos estructurales de una institución educativa de 3 niveles con un sistema estructural de pórtico, ubicada en el distrito de Perené, Chanchamayo – Junín, en el cual se concluyó que:

- ➤ El costo total del proyecto está estimado en un total de 511,115.48 soles con un área techada de 271 m², y un tiempo de ejecución estimada de 06 meses.
- ➤ Del análisis sísmico se obtuvieron las propiedades dinámicas de la estructura, siendo estas, el periodo fundamental de 0.279 segundos en la dirección de la abscisa y ordenada, las distorsiones máximas de 0.0066 en la dirección x-x y 0.006 en la dirección y-y, dígitos que satisfacen la distorsión inelástica de 0.007 de la Norma E.030.
- ➤ El sistema estructural del presente proyecto no presenta irregularidad en planta y altura debido a la simetría y continuidad de las columnas.
- ➤ Del análisis estático y dinámico se concluye que los elementos estructurales horizontales y verticales de la institución educativa del primer nivel sufren mayores esfuerzos cortantes y momentos flectores.
- ➤ Se identificó un total de 13 riesgos en la evaluación de impactos y riesgos que ayudarán a prevenir que sucedan factores externos (legales, técnicos, operativos durante la ejecución del proyecto.

11. Recomendaciones

- Para el diseño de las cimentaciones se recomienda realizar un correcto estudio de mecánica de suelos para verificar si los parámetros de diseño de los estudios referenciales cumplen con la Norma E050.
- ➤ En toda estructura que pertenece a la categoría de edificaciones esenciales según el capítulo 3, articulo 3.1 de la norma E.030; se recomienda realizar el análisis sísmico de diseño para garantizar el desempeño de la estructura frente a un evento sísmico.
- ➤ En la actualidad, en el presupuesto del proyecto se debe incluir el Plan Covid para garantizar el cuidado de salud de todos los trabajadores.

Es necesario realizar el análisis de riesgos con la finalidad de identificar las acciones necesarias de mitigación y evitar que las amenazas externas tengan un mayor impacto en el desarrollo del proyecto.

12. Referencias

- Astorga Mendizábal, M. A., & Aguilar Velez, R. (2006). Evaluación del riesgo sísmico de edificaciones. Lima: PUCP.
- Ayala, D., Galasso, C., Nassirpour, A., Kumar Adhikari, R., Yamin, L., Fernandez, R., . . . Orieta, A. (2020). International Journal of Disaster Risk Reduction. *El Sevier*. Obtenido de https://www.sciencedirect.com/science/article/pii/S2212420919309306#bib9
- Blanco Blasco, A. (s.f.). *Estructuración y Diseño de Edificaciones de Concreto Armado*. Lima: Capitulo de Ingeniería Civil, Consejo Departamental de Lima.
- Castillo Galván, D. (2007). Plan de Desarrollo Concertado de la Provincia de Chanchamayo 2007-2016. Chanchamayo.
- Castro Pérez, M., & Moralez Ramirez, M. E. (2015). Los ambientes de aula que promueven el aprendizaje, desde la perspectiva de los niños y niñas escolares. *Educare*, 1-32. Obtenido de https://www.redalyc.org/pdf/1941/194140994008.pdf
- Cisneros, R. (2017). Analisis y diseño de edificaciones con ETABS. Ayacucho.
- Estructuralia. (26 de Marzo de 2020). *5 herramientas de aplicación BIM*. Obtenido de https://blog.structuralia.com/5-software-bim-que-deberias-conocer
- Instituto Nacional de Estadística y Informatica. (2018). Principales Resultados de la Encuesta Nacional a las instituciones Educativas de nivel inicial, primaria y secundaria. Lima.
- MINEDU. (2017). Plan Nacional de Infraestructura Educativa. Lima.
- MINEDU. (2018). Educacion en el Perú. Lima.
- Ministerio de Economía y Finanzas. (2019). Plan Nacional de Infraestructura para la competividad. Lima.
- UNICEF. (28 de Octubre de 2018). SULAWESI EARTHQUAKE & TSUNAMI: ONE MONTH ON FROM THE DISASTER, THOUSANDS OF CHILDREN STILL HOMELESS, OUT OF SCHOOL AND IN NEED OF HUMANITARIAN SUPPORT.

 Obtenido de https://www.unicef.org.uk/press-releases/sulawesi-earthquake-tsunami-one-month-on-from-the-disaster-thousands-of-children-still-homeless-out-of-school-and-in-need-of-humanitarian-support/

13. ANEXO

DISEÑO DE VIGA SECUNDARIA
$$b=25 \text{ cm} \qquad f_{\pi}=210 \frac{\log f}{\cos^{2}}$$

$$b=35 \text{ cm} \qquad f_{\pi}=4200 \frac{\log f}{\cos^{2}}$$

$$f_{\pi}=4200 \frac{\log f}{\cos^{2}}$$

$$r=5 \text{ cm} \qquad \phi 1:=0.85$$

$$d=b-r=30 \text{ cm} \qquad \phi 2:=0.9$$

a. Diseño por flexión

Momento en el apoyo izquierdo

Cálculo del "a" asociado al rectángulo equivalente de esfuerzos del bloque de Whitney

$$a1 = d - \sqrt[3]{d^2 - 2 \cdot \frac{M_{ing}}{\phi 2 \cdot 0.85 \cdot f_o \cdot b}} = 1.102$$

Cálculo del área de acero (As)

$$A_{ab} = \frac{M_{aa}}{\phi 2 \cdot f_{a} \cdot \left(d - \frac{a1}{2}\right)} = 1.171 \text{ cm}^3$$

Cálculo de acero mínimo (Asmín)

Cálculo de acero máximo (Asmax)

$$\rho_{--} = 0.75 \ \beta \cdot 0.85 \cdot \frac{f_{*}}{f_{y}} \cdot \left(\frac{6000}{6000 + f_{y} \cdot \frac{\cos^{2}}{\log f}}\right) = 0.016$$

$$R1 = \text{if } A_{a1} \leq A_{\underline{a}\underline{a}}$$

$$\|A_{a1} \cdot 1.33\|$$

$$\text{nion}$$

$$\|A_{a1}$$

R1 = 1.557 cm²

TABLA DE REFUERZOS EN FUNCION A SU AREA Y NUMERO DE BARRAS

-	Dián	netro	Peso		Area de los refuerzos según número de barras (cm²)								
	in	cm	kg/m	1	2	3	4	5	6	7	8	9	10
2	1/4	0,635	0,25	0,32	0,64	0,96	1,28	1,60	1,92	2,24	2,56	2,88	3,20
3	3/8	0,953	0,58	0,71	1,42	2,13	2,84	3,55	4,26	4,97	5,68	6,39	7,10
4	1/2	1,270	1,02	1,29	2,58	3,87	5,16	6,45	7,74	9,03	10,32	11,61	12,90
5	5/8	1,588	1,60	2,00	4,00	6,00	8,00	10,00	12,00	14,00	16,00	19,00	20,00
6	3/4	1,905	2,26	2,84	5,68	8,52	11,36	14,20	17,04	19,88	22,72	25,56	28,40
8	1	2,540	4,04	5,10	10,20	15,30	20,40	25,50	30,60	35,70	40,80	45,90	51,00
11	1 3/8	3,493	7,95	10,06	20,12	30,18	40,24	50,30	60,36	70,42	80,48	90,54	100,60

Distribución del acero continúo

2**¢**1/2"

 $A_{-1} = 2.58 \text{ cm}^2$

Momento Central

Cálculo del "a" asociado al rectángulo equivalente de esfuerzos del bloque de Whitney

$$d2 = d - \sqrt[3]{d^2 - 2 \cdot \frac{M_{con}}{\phi 2 \cdot 0.85 \cdot f_o \cdot b}} = 2.286 \text{ cm}$$

Cálculo del área de acero (As)

$$A_{ab} = \frac{M_{min}}{\phi 2 \cdot f_{g} \cdot \left(d - \frac{a^2}{2}\right)} = 2.429 \text{ cm}^2$$

Cálculo de acero mínimo (Asmín)

$$A_{--} = 0.24\% \cdot b \cdot d = 1.8 \text{ cm}^2$$

Cálculo de acero máximo (Asmax)

$$\rho_{---} = 0.75 \ \beta \cdot 0.85 \cdot \frac{f_{*}}{f_{y}} \cdot \left(\frac{6000}{6000 + f_{y} \cdot \frac{\cos^{2}}{\log f}}\right) = 0.016$$

$$R2=2.420$$
 cm²

TABLA DE REFUERZOS EN FUNCION A SU AREA Y NUMERO DE BARRAS

	Dián	netro	Peso	Área de los refuerzos según número de barras (cm²)									
_ #	in	cm	kg/m	1	2	3	4	5	6	7	8	9	10
2	1/4	0,635	0,25	0,32	0,64	0,96	1,28	1,60	1,92	2,24	2,56	2,88	3,20
3	3/8	0,953	0,58	0,71	1,42	2,13	2,84	3,55	4,26	4,97	5,68	6,39	7,10
4	1/2	1,270	1,02	1,29	2,58	3,87	5,16	6,45	7,74	9,03	10,32	11,61	12,90
5	5/8	1,588	1,60	2,00	4,00	6,00	8,00	10,00	12,00	14,00	16,00	19,00	20,00
6	3/4	1,905	2,26	2,84	5,68	8,52	11,36	14,20	17,04	19,88	22,72	25,56	28,40
8	1	2,540	4,04	5,10	10,20	15,30	20,40	25,50	30,60	35,70	40,80	45,90	51,00
11	1 3/8	3,493	7,95	10,06	20,12	30,18	40,24	50,30	60,36	70,42	80,48	90,54	100,60

Distribución del acero continúo

$$A_{-2} = 2.58 \text{ cm}^2$$

Momento en el apoyo derecha

Cálculo del "a" asociado al rectángulo equivalente de esfuerzos del bloque de Whitney

$$a3 = d - \sqrt[3]{d^2 - 2 \cdot \frac{M_{dor}}{\phi 2 \cdot 0.85 \cdot f_o \cdot b}} = 3.275 \text{ cm}$$

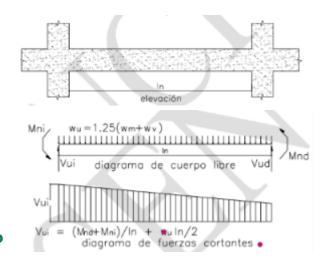
Cálculo del área de acero (As)

$$A_{ab} = \frac{M_{ab}}{\phi 2 \cdot f_{a} \cdot \left(d - \frac{a1}{2}\right)} = 8.861 \text{ cm}^{2}$$

Cálculo de acero mínimo (Asmín)

Cálculo de acero máximo (Asmax)

$$\rho_{max} = 0.75 \ \beta \cdot 0.85 \cdot \frac{f_{x}}{f_{y}} \cdot \left(\frac{6000}{6000 + f_{y} \cdot \frac{\cos^{2}}{\log f}} \right) = 0.016$$


Distribución del acero continúo

$$3^{\phi} \frac{1}{2}$$
 $A_{-} = 8.87 \text{ cm}^2$

b. Diseño por capacidad

Capacidad 1

$$W_m = 2536.2 \frac{kef}{m}$$

 $W_n = 1960 \frac{kef}{m}$

Análisis en el sentido antihorario

$$M_{-1} = 280781.44 \text{ kgf} \cdot m$$

$$M_{-1} = 290731.44 \text{ kgf} \cdot m$$

$$W_{\text{mi}} = 1.25 \cdot (W_{\text{m}} + W_{\text{v}}) = (5.62 \cdot 10^2) \cdot \frac{1}{\text{m}} \cdot \log f$$

Cortantes isostáticas

Izquierda

$$Vad1 = \frac{M_{min} + M_{min}}{Lm} + W_{min} \cdot \frac{Lm}{2} = (1.794 \cdot 10^{8}) \text{ bgf}$$

Derecha

$$Vad1 = \frac{M_{ell} + M_{ell}}{L_{lo}} - W_{ell} \cdot \frac{L_{lo}}{2} = (1.609 \cdot 10^{5}) \text{ legf}$$

A una distancia "d"

$$V = 1d = \frac{(V = 1 - V = d1) \cdot (Ln - d)}{Ln} = (1.686 \cdot 10^4) \text{ kgf}$$

$$Vad1d = \frac{(Vai1 - Vad1) \cdot d}{L_{0}} = (1.686 \cdot 10^{3}) \text{ kgf}$$

Análisis en el sentido horario

$$W_{\text{ul}} = 1.25 \cdot \langle W_{\text{us}} + W_{\text{v}} \rangle = \langle 5.62 \cdot 10^3 \rangle \cdot \frac{1}{\text{cs}} \cdot \text{bgf}$$

Cortantes isostáticas

Izquierda

$$Ved2 = \frac{M_{ed1} + M_{ed2}}{Ln} - W_{ed} \cdot \frac{Ln}{2} = (2.007 \cdot 10^{5}) \text{ bgf}$$

Derecha

$$Ved2 = \frac{M_{e32} + M_{e43}}{Ln} + W_{e1} \cdot \frac{Ln}{2} = (2.193 \cdot 10^{5}) \text{ ingf}$$

A una distancia "d"

$$V_{m2d} = \frac{(V_{md2} - V_{m2}) \cdot (d)}{I_{m}} = (1.686 \cdot 10^{3}) \text{ kgf}$$

$$V_{mDd} = \frac{(V_{mDd} - V_{mDd}) \cdot (L_{m} - d)}{L_{m}} = (1.686 \cdot 10^{4}) \text{ bgf}$$

$$Visq1 = max(Vuild, Vui2d) = (1.686 \cdot 10^4) \ logf$$

$$Vder1 = \max(Vud1d, Vud2d) = (1.686 \cdot 10^4) \ kgf$$

Capacidad 2

Combinaciones especiales

$$Vizq1' = 6984.2 kgf$$

Capacidad 3

Combinaciones normales

$$Vder1^* = 5980.1 \ kgf$$

Cortantes últimas finales

Izquierda

Derecha

$$Vuder1 = min(Vder1', Vder1) = (1.121 \cdot 10^3)$$
 kgf
 $Vuder = max(Vuder1, Vder1'') = (5.98 \cdot 10^3)$ kgf

C. Diseño por corte

$$V_{n} = \max(Vulsq, Vuder) = (6.984 \cdot 10^{4}) \text{ bgf}$$

Resistencia nominal al cortante

$$V_{a} = \frac{V_{a}}{\phi 1} = (8.217 \cdot 10^{3}) \text{ lngf}$$

$$V_{a} = 0.53 \cdot \sqrt[3]{f_{c}^{2} \cdot \frac{\text{lngf}}{cm^{2}}} \cdot b \cdot d = (5.76 \cdot 10^{3}) \text{ lngf}$$

$$V_{a} = V_{a} - V_{a} = (2.456 \cdot 10^{3}) \text{ lngf}$$

R3="Necesita refnerso transversal (Estribos)"

$$V_{H}=2.1 \cdot \sqrt[3]{f_{e}} \cdot \frac{kgf}{cm^{2}} \cdot b \cdot d = \left(2.282 \cdot 10^{4}\right) \, kgf$$
 $R4 = \text{if } V_{s} \leq V_{H}$

So necesita aumentar las dimesiones o for elas

"Si necesita aumentar las dimesiones o for elas dimesiones dimesiones o for elas dimesiones dimes

R4= "No necesita aumentar las dimeniones o l'c"

$$s = \frac{Av\,fy\,d}{Vs}$$

La norma limita el espaciamiento calculado de tal modo que:

Si $Vs \le 1.1 \sqrt{f'c} \ bw \ d$ entonces $s \le 0.60 \ m \ ó \ s \le d/2$

Si $Vs > 1.1 \sqrt{f'c} \ bw \ d$ entonces $s \le 0.30 \ m \ ó \ s \le d/4$

Cálculo de acero vertical

$$V_{11} = 1.1 \cdot \sqrt[3]{f_o \cdot \frac{bgf}{cm^2}} \cdot b \cdot d = (1.196 \cdot 10^4) \ bgf$$

$$R$$
5 \Leftarrow if $V_{*} \leq V_{11}$

"S es menor que 0.6 m o d/2"

else

"S es menor que 0.3 m o d/4"

 $R5 = ^{\circ}S$ on monor que 0.6 m o d/2°

$$S_1 = 60$$
 cm

$$S_2 = \frac{d}{2} = 15$$
 cm

$$S_{t} = min\left(S_{1}, S_{2}\right) = 15$$

$$A_{\mathbf{y}} = V_{\mathbf{y}} \cdot \frac{S_{\mathbf{t}}}{f_{\mathbf{y}} \cdot d} = 0.292 \text{ cm}^2$$

Cálculo de acero mínimo

*R*6=°6i necesita coloçar estribos minimos°

$$A_{\frac{1}{2}} = 3.5 \cdot b \cdot \frac{S_k}{f_g \cdot \frac{cm^2}{kgf}} = 0.313 \text{ cm}^2$$

$$A_{---} = \max(A_{----1}, A_{-----}) = 0.313 \text{ cm}^2$$

DISEÑO DE VIGA DE APOYO DE ESCALERA

Datos

$$b=25 \text{ cm}$$
 $f'_c=210 \frac{\text{kgf}}{\text{cm}^2}$
 $h=35 \text{ cm}$ $f_y=4200 \frac{\text{kgf}}{\text{cm}^2}$
 $Ln=3.3 \text{ m}$ $\phi 1=0.85$
 $d=h-r=30 \text{ cm}$ $\phi 2=0.9$

a. Diseño por flexión

Momento en el apoyo izquierdo

$$M_{im} = 835.92 \ kgf \cdot m$$

Cálculo del "a" asociado al rectángulo equivalente de esfuerzos del bloque de Whitney

$$a1 = d - \sqrt[2]{d^2 - 2 \cdot \frac{M_{inq}}{\phi 2 \cdot 0.85 \cdot f_c \cdot b}} = 0.702 \text{ cm}$$

Cálculo del área de acero (As)

$$A_{a1} = \frac{M_{inq}}{f_{y} \cdot \left(d - \frac{a1}{2}\right)} = 0.671 \text{ cm}^2$$

Cálculo de acero mínimo (Asmín)

Cálculo de acero máximo (Asmáx)

$$\rho_{\max} = 0.75 \ \beta \cdot 0.85 \cdot \frac{f'_e}{f_y} \cdot \left(\frac{6000}{6000 + f_y \cdot \frac{cm^2}{kgf}} \right) = 0.016$$

$$A_{max} = \rho_{max} \cdot b \cdot d = 11.953 \text{ cm}^2$$

$$R1 = \text{if } A_{\text{at}} \leq A_{\text{main}}$$

$$A_{\text{at}} \cdot 1.33$$
else
$$A_{\text{at}}$$

TABLA DE REFUERZOS EN FUNCION A SU AREA Y NUMERO DE BARRAS

" Diámetro Peso Área de los refuerzos s							uerzos s	egún núr	nero de l	barras (ci	m²)			
_ *	*	in	cm	kg/m	1	2	3	4	5	6	7	8	9	10
	2	1/4	0,635	0,25	0,32	0,64	0,96	1,28	1,60	1,92	2,24	2,56	2,88	3,20
	3	3/8	0,953	0,58	0,71	1,42	2,13	2,84	3,55	4,26	4,97	5,68	6,39	7,10
4	4	1/2	1,270	1,02	1,29	2,58	3,87	5,16	6,45	7,74	9,03	10,32	11,61	12,90
	5	5/8	1,588	1,60	2,00	4,00	6,00	8,00	10,00	12,00	14,00	16,00	19,00	20,00
(6	3/4	1,905	2,26	2,84	5,68	8,52	11,36	14,20	17,04	19,88	22,72	25,56	28,40
	8	1	2,540	4,04	5,10	10,20	15,30	20,40	25,50	30,60	35,70	40,80	45,90	51,00
1	1	1 3/8	3,493	7,95	10,06	20,12	30,18	40,24	50,30	60,36	70,42	80,48	90,54	100,60

Distribución del acero continúo

$$A_{m1} = 1.42 \text{ cm}^2$$

Momento Central

$$M_{cm} = 1232.58 \text{ kgf} \cdot m$$

Cálculo del "a" asociado al rectángulo equivalente de esfuerzos del bloque de Whitney

$$a2 = d - \sqrt[2]{d^2 - 2 \cdot \frac{M_{con}}{\phi 2 \cdot 0.86 \cdot f_c \cdot b}} = 1.041 \text{ cm}$$

Cálculo del área de acero (As)

$$A_{ab} = \frac{M_{con}}{f_y \cdot \left(d - \frac{a2}{2}\right)} = 0.995 \text{ cm}^2$$

Cálculo de acero mínimo (Asmín)

$$A_{min} = 0.18\% \cdot b \cdot d = 1.35 \text{ cm}^2$$

Cálculo de acero máximo (Asmax)

$$A_{--} = \rho_{--} \cdot b \cdot d = 11.953 \text{ cm}^2$$

$$R2 = ext{if } A_{xx} \leq A_{contin}$$

$$A_{xx} \cdot 1.33$$

$$else$$

$$A_{xx}$$

R2 = 1.324 cm²

TABLA DE REFUERZOS EN FUNCION A SU AREA Y NUMERO DE BARRAS

	Dián	netro	Peso			Àrea d	le los ref	uerzos s	egún núr	nero de l	barras (c	m²)	
#	in	cm	kg/m	1	2	3	4	5	6	7	8	9	10
2	1/4	0,635	0,25	0,32	0,64	0,96	1,28	1,60	1,92	2,24	2,56	2,88	3,20
3	3/8	0,953	0,58	0,71	1,42	2,13	2,84	3,55	4,26	4,97	5,68	6,39	7,10
4	1/2	1,270	1,02	1,29	2,58	3,87	5,16	6,45	7,74	9,03	10,32	11,61	12,90
5	5/8	1,588	1,60	2,00	4,00	6,00	8,00	10,00	12,00	14,00	16,00	19,00	20,00
6	3/4	1,905	2,26	2,84	5,68	8,52	11,36	14,20	17,04	19,88	22,72	25,56	28,40
8	1	2,540	4.04	5,10	10,20	15,30	20,40	25,50	30,60	35,70	40,80	45,90	51,00
11	1 3/8	3,493	7,95	10,06	20,12	30,18	40,24	50,30	60,36	70,42	80,48	90,54	100,60

Distribución del acero continúo

$$A_{=2} = 1.42 \text{ cm}^2$$

Momento en el apoyo derecha

$$M_{\perp} = 1948.40 \text{ kgf} \cdot m$$

Cálculo del "a" asociado al rectángulo equivalente de esfuerzos del bloque de Whitney

$$a3 = d - \sqrt[2]{d^2 - 2 \cdot \frac{M_{\frac{1}{2m}}}{\phi^2 \cdot 0.85 \cdot f_c \cdot b}} = 1.663 \text{ cm}$$

Cálculo del área de acero (As)

$$A_{ab} = \frac{M_{der}}{f_y \cdot \left(d - \frac{a1}{2}\right)} = 1.565 \text{ cm}^2$$

Cálculo de acero mínimo (Asmín)

$$A_{--} = 0.18\% \cdot b \cdot d = 1.35 \text{ cm}^2$$

Cálculo de acero máximo (Asmax)

$$\rho_{\max} = 0.75 \ \beta \cdot 0.85 \cdot \frac{f'_c}{f_y} \cdot \left(\frac{6000}{6000 + f_y \cdot \frac{cm^2}{kgf}} \right) = 0.016$$

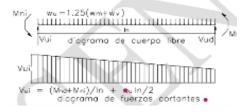
$$A_{--} = \rho_{--} \cdot b \cdot d = 11.953 \text{ cm}^2$$

$$R3 = \text{if } A_{a3} \le A_{avain}$$

$$A_{a2} \cdot 1.33$$
else
$$A_{a3}$$

 $R3 = 1.565 \text{ cm}^2$

TABLA DE REFUERZOS EN FUNCION A SU AREA Y NUMERO DE BARRAS


	Dián	netro	Peso			Àrea d	le los ref	uerzos s	egún núr	nero de l	parras (c	m²)	
#	in	cm	kg/m	1	2	3	4	5	6	7	8	9	10
2	1/4	0,635	0,25	0,32	0,64	0,96	1,28	1,60	1,92	2,24	2,56	2,88	3,20
3	3/8	0,953	0,58	0,71	1,42	2,13	2,84	3,55	4,26	4,97	5,68	6,39	7,10
4	1/2	1,270	1,02	1,29	2,58	3,87	5,16	6,45	7,74	9,03	10,32	11,61	12,90
5	5/8	1,588	1,60	2,00	4,00	6,00	8,00	10,00	12,00	14,00	16,00	19,00	20,00
6	3/4	1,905	2,26	2,84	5,68	8,52	11,36	14,20	17,04	19,88	22,72	25,56	28,40
8	1	2,540	4,04	5,10	10,20	15,30	20,40	25,50	30,60	35,70	40,80	45,90	51,00
11	1 3/8	3,493	7,95	10,06	20,12	30,18	40,24	50,30	60,36	70,42	80,48	90,54	100,60

Distribución del acero continúo

$$A_{-2} = 2.13 \text{ cm}^2$$

b. Diseño por capacidad

Cortante asociado al momento Nominal

$$W_{m} = 150 \frac{kgf}{m}$$

$$W_{\bullet} = 450 \frac{kgf}{m}$$

$$Ln = 3.3 m$$

Análisis en el sentido antihorario

$$M_{mil} = 174934.645 \ kgf \cdot m$$

$$M_{-k} = 259412.95 \text{ kgf} \cdot m$$

$$W_{m1} = 1.26 \cdot (W_m + W_n) = 750 \cdot \frac{1}{m} \cdot kgf$$

Cortantes isostáticas

Izquierda

$$Vusi1 = \frac{M_{min} + M_{min}}{Lm} + W_{min} \cdot \frac{Lm}{2} = (1.329 \cdot 10^5) \text{ kgf}$$

Derecha

$$Vud1 = \frac{M_{min} + M_{min}}{I_{min}} - W_{min} \cdot \frac{I_{min}}{2} = (1.304 \cdot 10^{6}) \ kgf$$

A una distancia "d"

$$Vuild = \frac{\left(Vuil - Vudl\right) \cdot \left(Im - d\right)}{Im} = \left(2.25 \cdot 10^{2}\right) \text{ kgf}$$

$$Vudld = \frac{\left(Vuil - Vudl\right) \cdot d}{Im} = 225 \text{ kgf}$$

Análisis en el sentido horario

$$M_{min} = 174934.645 \ kgf \cdot m$$

$$M_{-b} = 174934.645 \text{ kgf} \cdot m$$

$$W_{m1} = 1.26 \cdot (W_m + W_p) = 750 \cdot \frac{1}{m} \cdot kgf$$

Cortantes isostáticas

Izquierda

$$V_{\text{tri}2} = \frac{M_{\text{min}} + M_{\text{min}}}{I_{\text{fin}}} - W_{\text{min}} \cdot \frac{I_{\text{fin}}}{2} = (1.048 \cdot 10^5) \text{ kgf}$$

Derecha

$$Vud2 = \frac{M_{wi2} + M_{wi2}}{Lm} + W_{wi} \cdot \frac{Lm}{2} = (1.073 \cdot 10^{5}) \text{ kgf}$$

A una distancia "d"

$$Vui2d = \frac{(Vui2 - Vui2) \cdot (d)}{Im} = 225 \text{ kgf}$$

$$Vui2d = \frac{(Vui2 - Vui2) \cdot (Im - d)}{Im} = (2.25 \cdot 10^{2}) \text{ kgf}$$

$$Vizq1 = \max(Vui1d, Vui2d) = (2.25 \cdot 10^3) \ kgf$$

$$Vder1 = \max(Vud1d, Vui2d) = (2.25 \cdot 10^3) \ kgf$$

Combinaciones especiales

$$Vder1' = 3428.78 \ kgf$$

Combinaciones normales

$$Vizq1"=2843.84 kgf$$

$$Vder1" = 2254.94 \text{ kgf}$$

Cortantes últimas finales

Izquierda

$$Vuizq1 = min(Vizq1', Vizq1) = (2.25 \cdot 10^2) kgf$$

$$Vuizq = max(Vuizq1, Vizq1'') = (2.844 \cdot 10^2) kgf$$

Derecha

$$Vuder1 := min(Vder1', Vder1) = (2.25 \cdot 10^2) \text{ kgf}$$

$$Vuder := max(Vuder1, Vder1'') = (2.255 \cdot 10^2) \text{ kgf}$$

c. Diseño por corte

$$V_{\mathbf{x}} = \max(Vuizq, Vuder) = (2.844 \cdot 10^3) \, kgf$$

Resistencia nominal al cortante

$$V_{n} = \frac{V_{n}}{\phi 1} = (3.346 \cdot 10^{2}) \ kgf$$

$$V_{c} = 0.53 \cdot \sqrt[2]{f_{c} \cdot \frac{kgf}{cm^{2}}} \cdot b \cdot d = (5.76 \cdot 10^{2}) \ kgf$$

$$V_{s} = V_{n} - V_{c} = -2.415 \cdot 10^{2} \ kgf$$

$$R3 = \text{if } \phi 1 \cdot V_c \ge V_a$$

"No requiere refnerzo transversal"

else

"Necesita refnerzo transversal (Estribos)"

R3 = "No requiere refuerzo transversal"

$$V_{tt}=2.1\cdot \sqrt[2]{f_c\cdot \frac{\log f}{cm^2}} \cdot b\cdot d = (2.282\cdot 10^4) \text{ kgf}$$
 $R4=\text{if } V_s \leq V_{tt}$

"No necesita anmentar las dimesiones o fc" else

"Si necesita sumentar las dimesiones o fc"

R4="No necesita aumentar las dimesiones o fc"

La norma limita el espaciamiento calculado de tal modo que:

Si
$$Vs \le 1.1 \sqrt{f'c} \ bw \ d$$
 entonces $s \le 0.60 \ m \ \'o \ s \le d/2$
Si $Vs > 1.1 \sqrt{f'c} \ bw \ d$ entonces $s \le 0.30 \ m \ \'o \ s \le d/4$

Cálculo de acero vertical

$$V_{11} = 1.1 \cdot \sqrt[2]{f_c \cdot \frac{\log f}{\cos^2}} \cdot b \cdot d = (1.196 \cdot 10^4) \log f$$
 $R_5 = \text{if } V_s \le V_{11}$

$$\text{aS es memor que 0.6 m o d/2}^*$$
else
$$\text{aS es memor que 0.3 m o d/4}^*$$

 $R_5 = {}^{\alpha}S$ es menor que 0.6 m o d/2*

$$S_1 = 60 \text{ cm}$$

$$S_2 = \frac{d}{2} = 15 \text{ cm}$$

$$S_t = min(S_1, S_2) = 15 \text{ cm}$$

$$A_t = V_s \cdot \frac{S_t}{f_s \cdot d} = -0.287 \text{ cm}^2$$

Cálculo de acero mínimo

$$R6 \coloneqq \text{if } 0.5 \cdot \phi 1 \cdot V_c \le V_u$$

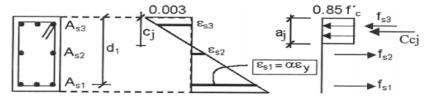
"Si necesita colocar estribos minimos" else

"No necesita colocar estribos minimos"

R6 = °Si necesita colocar estribos mínimos °

$$A_{\text{consist}} = 0.2 \cdot \sqrt[2]{f_c' \cdot \frac{kgf}{cm^2}} \cdot b \cdot \frac{S_t}{f_y} = 0.259 \text{ cm}^2$$

$$A_{\frac{cmin2}{2}} = 3.5 \cdot b \cdot \frac{S_t}{f_3 \cdot \frac{cm^2}{k_B f}} = 0.313 \text{ cm}^2$$

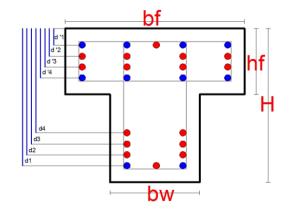

DISEÑO PARA COLUMNAS DE SECCIONES TIPO "T"

A. ANALISIS CUANDO A SECCIÓN ESTA COMPRIMIDA EN LA PARTE SUPERIOR

5

20

0 0 55



Para cada valor de α adoptado, se tiene:

$$c_j = \left(\frac{0.003}{0.003 - \alpha \varepsilon y}\right) d_1$$
 α es positivo si ε s1 es de compresión α es negativo si ε s1 es de tracción
$$\varepsilon si = \left(\frac{c - di}{c}\right) 0.003$$
 Deformación positiva si es de compresión
$$fsi = Es \varepsilon si \le fy$$
 $Fsi = Asi fsi$ (positivo compresión)
$$aj = \beta 1 cj$$
 $Ccj = 0.85 fc \times (\text{Área comprimida})$

DATOS:

bf=	80	d'1=
bw=	30	d'2=
hf=	25	d'3=
H=	60	d'4=
ø=	0.7	
f'c =	210	
fy =	4200	
ES =	2000000	
εcu =	0.003	
εy =	0.0021	d4=
β1 =	0.85	d3=
d=	55	d2=
		d1=

5 1-	11.50	4//12	238300
S'2=		0	0
S'3=	0	0	0
S'4=	11.36	47712	954240
S4=	5.68	23856	954240
S3=	0	0	0
S2=	0	0	0
S1=	5.68	23856	1312080
TOTAL	34.08	143136	3459120

Ast (cm2)

S'1=

Fsi(kgf) Mi(kgf.cm)

238560

AREA DE LA SECCION BRUTA (Ag)

Ag= 3050 cm2

AREA DE ACERO TOTAL (Ast)

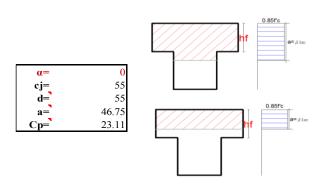
Ast= 34.08 cm2

 $\rho = 1.12\%$ **OK**

NORMA 1%- 6%

1. HALLANDO EL CENTROIDE GEOMETRICO DE LA COLUMNA

Ycg= **22.83** cm


2. HALLANDO EL CENTROIDE PLASTICO DE LA COLUMNA

Yp= **23.11** cm

3. ANALISIS DEL 1ER PUNTO(COMPRESION PURA)

Pn=	681.48	Tn	
Pnmax=	545.2	Tn	
Pu=	477.03	Tn	
Pumax=	381.6	Tn	

4. ANALISIS DEL 2DO PUNTO(FISURACION INCIPIENTE)

.posibilidades dependiando de la profundidad del bloque equivalente.

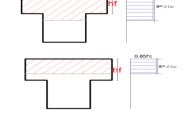
ARE	A (cm²)	di (cm	1)	εSi		fSi		fs>fy	fSi	Fsi(Kg)	Brazo	Fsi*Brazo
S'1=	11.36	d'1=	5	εS'1=	0.002727	fS'1=	5454	fluye	4200	47712	18.10657891	863901.09
S'2=	0	d'2=	0	εS'2=	0	fS'2=	0	no fluye	0	0	23.10657891	0
S'3=	0	d'3=	0	εS'3=	0	fS'3=	0	no fluye	0	0	23.10657891	0
S'4=	11.36	d'4=	20	εS'4=	0.001909	fS'4=	3818	no fluye	3818	43372.48	3.106578907	134740.03
S4=	5.68	d4=	40	εS4 =	0.000818	fS4=	1636	no fluye	1636	9292.48	-16.89342109	-156981.78
S3=	0	d3=	0	εS3 =	0	fS3=	0	no fluye	0	0	23.10657891	0
S2=	0	d2=	0	εs2=	0	fS2=	0	no fluye	0	0	23.10657891	0
S1=	5.68	d1=	55	εS1=	0	fS1=	0	no fluye	0	0	-31.89342109	0
				_					Cc=	473471.25	Mc=	2299394.7

P	n	573.84821	Ton
N	Í n	31.41054051	Ton.m

Pu	401.693747 Ton
Mu	21.98737836 Ton.m

5. ANALISIS DEL 3ER PUNTO(FALLA BALANCEADA)

.posibilidades dependiando de la profundidad del bloque equivalente.

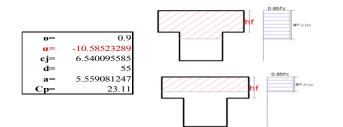


Punto de aplicacion 12.5 cm 13.75 cm

hf>a NO **Cc=** 392700 kg

Punto de aplicacion 13.75 cm

		_
α=	-1	
cj=	32.35294118	cm
d=		cm
a=	27.5	cm
Cp=	23.11	cm


ARE	A (cm²)	di (cn	1)	εSi		fSi		fs>fy	fSi	Fsi(Kg)	Brazo	Fsi*Brazo
S'1=	11.36	d'1=	5	εS'1=	0.002536	fS'1=	5072	fluye	4200	47712	18.10657891	863901.09
S'2=	0	d'2=	0	εS'2=	O	fS'2=	0	no fluye	0	0	23.10657891	0
S'3=	0	d'3=	0	εS'3=	0	fS'3=	0	no fluye	0	0	23.10657891	0
S'4=	11.36	d'4=	20	εS'4=	0.001145	fS'4=	2290	no fluye	2290	26014.4	3.106578907	80815.786
S4=	5.68	d4=	40	$\varepsilon S4 =$	-0.000709	fS4=	-1418	no fluye	-1418	-8054.24	-16.89342109	136063.67
S3=	0	d3=	0	ε S3 =	O	fS3=	0	no fluye	0	0	23.10657891	0
S2=	0	d2=	0	εs2=	0	fS2=	0	no fluye	0	0	23.10657891	0
S1=	5.68	d1=	55	εS1=	-0.0021	fS1=	-4200	fluye	-4200	-23856	-31.89342109	760849.45
,									Cc=	370387.5	Mc=	3744466 1

Pn	412.20366 Ton
Mn	55.86096121 Ton.m

Pu 288.542562 Ton Mu 39.10267284 Ton.m

6. ANALISIS DEL 4TO PUNTO(FLEXION PURA)

.posibilidades dependiando de la profundidad del bloque equivalente.

		Cf=	223125 kg
			29768.88 kg
hf <a< th=""><th>NO</th><th>Cc=</th><th>252893.88 kg</th></a<>	NO	Cc=	252893.88 kg

Punto de aplicacion 12.5 cm 2.779541 cm

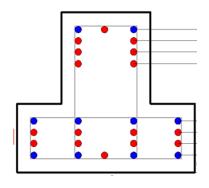
hf>a SI **Cc**= 79383.7 kg

Punto de aplicacion 2.8 cm

ARE	A (cm²)	di (cn	1)	εSi		fSi		fs>fy	fSi	Fsi(Kg)	Brazo	Fsi*Brazo
S'1=	11.36	d'1=	5	εS'1=	0.000706	fS'1=	1412	no fluye	1412	16040.32	18.10657891	290435.32
S'2=	0	d'2=	0	εS'2=	0	fS'2=	o	no fluye	0	0	23.10657891	0
S'3=	0	d'3=	0	εS'3=	0	fS'3=	o	no fluye	0	0	23.10657891	0
S'4=	11.36	d'4=	20	εS'4=	-0.006174	fS'4=	-12348	fluye	-4200	-47712	3.106578907	-148221.09
S4=	5.68	d4=	40	$\varepsilon S4 =$	-0.015348	fS4=	-30696	fluye	-4200	-23856	-16.89342109	403009.45
S3=	0	d3=	0	$\varepsilon S3 =$	0	fS3=	o	no fluye	0	0	23.10657891	0
S2=	0	d2=	0	εs2=	0	fS2=	0	no fluye	0	0	23.10657891	0
S1=	5.68	d1=	55	εS1=	-0.022229	fS1=	-44458	fluye	-4200	-23856	-31.89342109	760849.45
								Cc=	79383.68	Mc=	1613635.1	

Pn	0.00 Ton
Mn	29.20 Ton.m

Pu	0.00 Ton
Mu	26.28 Ton.m


7. ANALISIS DEL 5TO PUNTO(ANALISIS DE TRACCION PURA)

Pn	-143.136 Ton
Pu	-128.8224 Ton
Mn	0 Ton.m

B. ANALISIS CUANDO LA SECCIÓN INFERIOR ESTA COMPRIMIDA

DATOS:

bf=	80	d'1=
bw=	30	d'2=
hf=	25	d'3=
H=	60	d'4=
ø=	0.7	
f'c =	210	
fy =	4200	
ES =	2000000	
εcu =	0.003	
εy =	0.0021	d4=
β1 =	0.85	d3=
d=	55	d2=
		d1=

	Ast (cm2)	Fsi(kgf)	Mi(kgf.cm)
S'1=	10.13	42546	212730
S'2=		0	0
S'3=	0	0	0
S'4=	10.13	42546	850920
S4=	20.27	85134	3405360
S3=	0	0	0
S2=	0	0	0
S1=	20.27	85134	4682370
TOTAL	60.8	255360	9151380

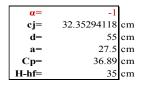
AREA DE LA SECCION BRUTA (Ag)

3050 cm2

AREA DE ACERO TOTAL (Ast)

Ast= 60.8 cm2

1.99% OK NORMA 1%- 6%


1. HALLANDO EL CENTROIDE GEOMETRICO DE LA COLUMNA

Ycg= **37.17** cm

2. HALLANDO EL CENTROIDE PLASTICO DE LA COLUMNA

36.89 cm Yp=

3. ANALISIS DEL 3ER PUNTO(FALLA BALANCEADA)

5 0 20

40 0 55

Punto de aplicacion 13.75 cm

AF	REA (cm²)	di (cn	n)	εSi		fSi		fs>fy	fSi	Fsi(Kg)	Brazo	Fsi*Brazo
S'1=	10.13	d'1=	5	εS'1=	0.002536	fS'1=	5072	fluye	4200	42546	31.89	1356937.5
S'2=	0	d'2=	0	εS'2=	0	fS'2=	0	no fluye	0	0	36.89	0
S'3=	0	d'3=	0	εS'3=	0	fS'3=	0	no fluye	0	0	36.89	0
S'4=	10.13	d'4=	20	εS'4=	0.001145	fS'4=	2290	no fluye	2290	23197.7	16.89	391888.51
S4=	20.27	d4=	35	εS4 =	-0.000245	fS4=	-490	no fluye	-490	-9932.3	1.89	-18806.026
S3=	0	d3=	0	εS3 =	0	fS3=	0	no fluye	0	0	36.89	0
S2=	0	d2=	0	εs2=	0	fS2=	0	no fluye	0	0	36.89	0
S1=	20.27	d1=	50	εS1=	-0.001636	fS1=	-3272	no fluye	-3272	-66323.44	-13.11	869273.4
									Cc=	147262.5	Mc=	3408158

Pn	136.75046 Ton
Mn	60.0745143 Ton.m

Pu	95.725322 Ton
Mu	42.05216001 Ton.m

Estos momentos se consideran con signos negativo

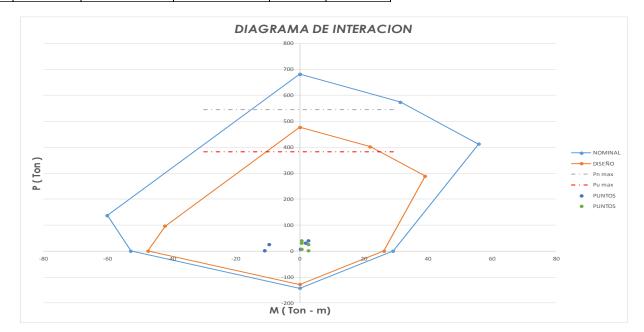
3. ANALISIS DEL FLEXIÓN PURA

| Punto de aplicacion | H-hf>a SI | Cc= 102704.15 kg | 9.589556 cm

AF	REA (cm²)	di (cm	1)	εSi		fSi		fs>fy	fSi	Fsi(Kg)	Brazo	Fsi*Brazo
S'1=	10.13	d'1=	5	εS'1=	0.002335	fS'1=	4670	fluye	4200	42546	31.89	1356937.5
S'2=	0	d'2=	0	εS'2=	0	fS'2=	0	no fluye	0	0	36.89	0
S'3=	0	d'3=	0	εS'3=	0	fS'3=	0	no fluye	0	0	36.89	0
S'4=	10.13	d'4=	20	εS'4=	0.000341	fS'4=	682	no fluye	682	6908.66	16.89	116710.9
S4=	20.27	d4=	35	εS4 =	-0.001653	fS4=	-3306	no fluye	-3306	-67012.62	1.89	-126883.11
S3=	0	d3=	0	εS3 =	0	fS3=	0	no fluye	0	0	36.89	0
S2=	0	d2=	0	εs2=	0	fS2=	0	no fluye	0	0	36.89	0
S1=	20.27	d1=	50	εS1=	-0.003648	fS1=	-7296	fluye	-4200	-85134	-13.11	1115815.5
								Cc=	102704.15	Mc=	2804220.2	

Pn	0.0 Ton
Mn	52.66800937 Ton.m

Pu	0.0 Ton
Mu	47.40120843 Ton.m


Estos momentos se consideran con signos negativo

RESUMEN DE RESULTADOS

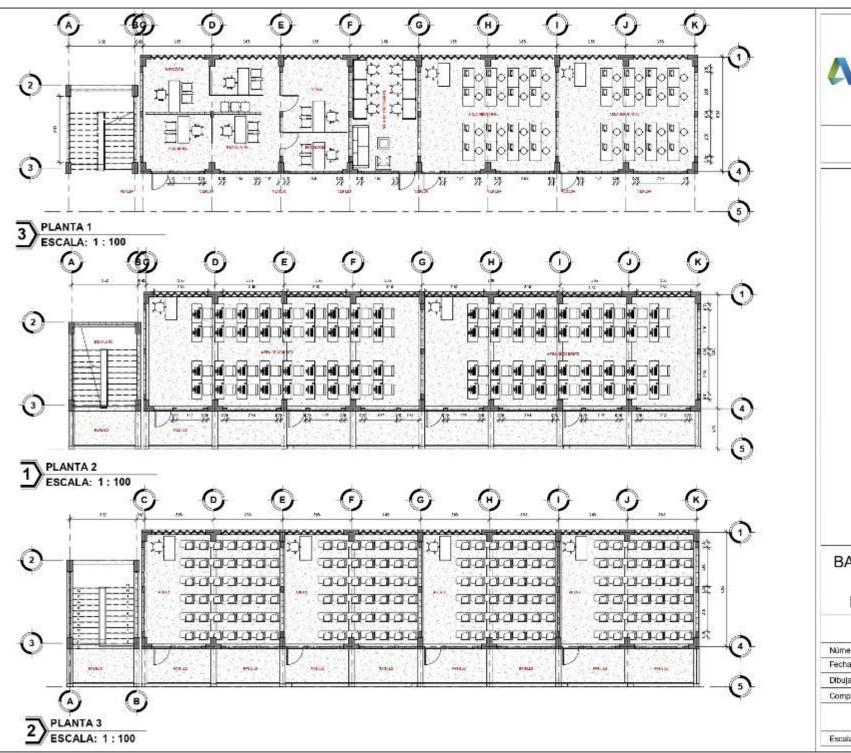
N	Pn	Mn	Pu	Mu
1	681.47772	0	477.034404	0
2	573.84821	31.41054051	401.693747	21.9874
3	412.20366	55.86096121	288.542562	39.1027
4	2.08459E-07	29.19708241	1.4592E-07	26.2774
5	-143.136	0	-128.8224	0
6	0	-52.66800937	0	-47.401
7	136.75046	-60.0745143	95.725322	-42.052


COMBINACIONES DE CARGA SEGÚN LA NORMA E 060

	1.4CM+1.7CV	0.9CM+S	0.9CM-S	1.25(CM+CV)+5	1.25(CM+CV)-S
P	39.18	30.19	25.09	2.33	7.42
M inf	2.67	1.79	-9.46	-11	0.24
M sup	0.6	0.63	2.74	2.64	0.53

ELEVACIÓN SUR ESCALA: 1:100

SECCIÓN LONG-FRONTAL ESCALA: 1:100


www.autodesk.com/revit

BACHILLER GROUP

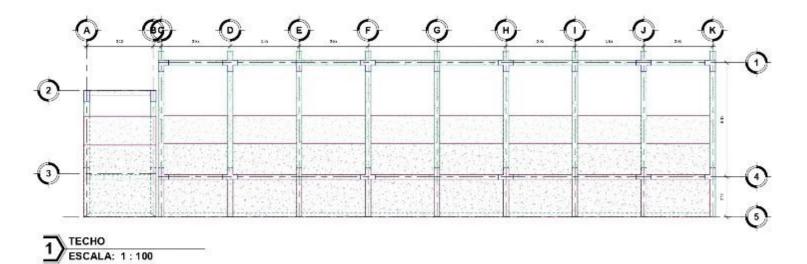
PABELLON N° 3

A-1

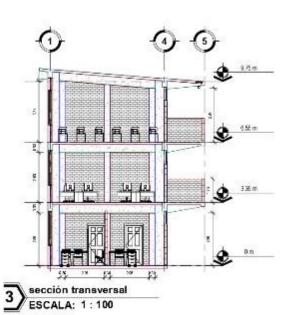
Fecha	Junio del 2019
Dibujado por	Auto
Comprobado por	Verificado
3	
3	1:

www.autodesk.com/revit

BACHILLER GROUP

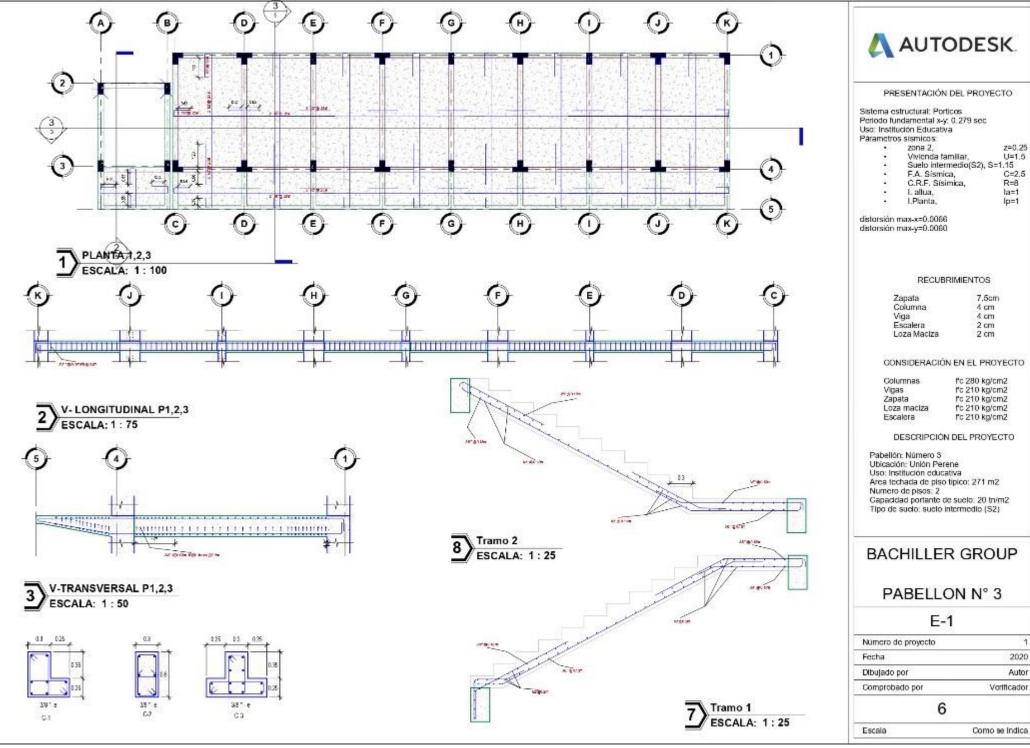

PABELLON N° 3

A-2


100000000000000000000000000000000000000
Junio del 2019
Autor
Verificador

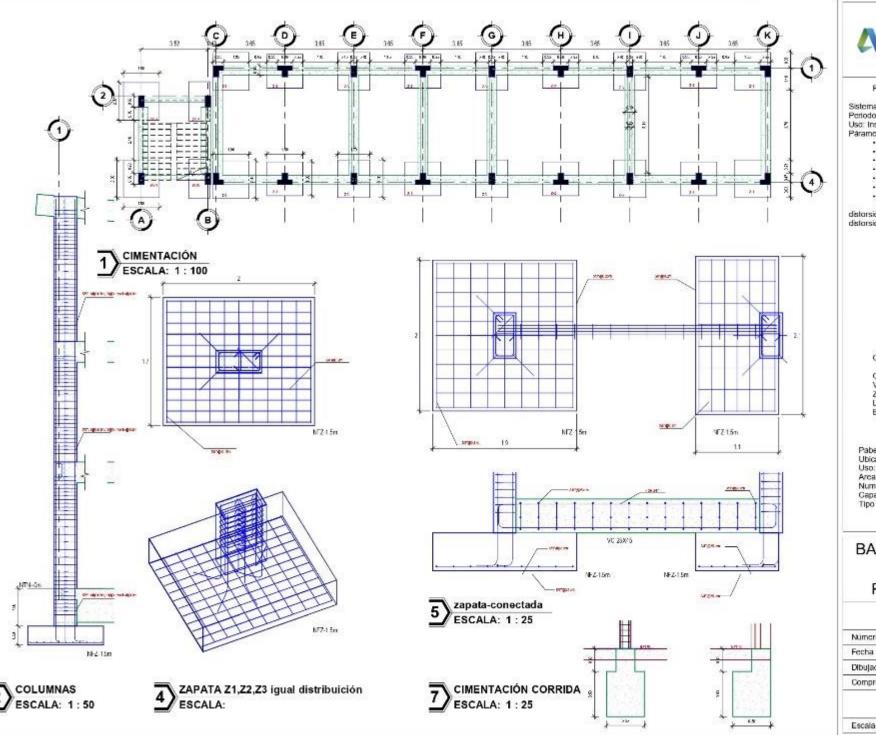
www.autodesk.com/revit

Sección escalera
ESCALA: 1:100



BACHILLER GROUP

PABELLON N° 3


A-3

Número de proyecto	1
Fecha	Junio del 2019
Dibujado por	Autor
Comprobado por	Verificador

Fecha	2020
Dibujado por	Autor
Comprobado por	Verificador

Como se Indica.

PRESENTACIÓN DEL PROYECTO

Sistema estructural: Porticos Periodo fundamental x-y. 0,279 sec Uso: Institución Educativa Párametros sismicos.

zona 2, z=0.25
 Vivicnda familiar, U=1.5
 Suelo intermedio(S2), S=1.15
 F.A. Sismica, C=2.5
 C.R.F. Sismica, R=8
 I. allua, la=1
 I.Planta, lp=1

distorsión max-x=0.0066 distorsión max-y=0.0060

RECUBRIMIENTOS

Zapata	7.50
Columna	4 cm
Viga	4 cm
Escalera	2 cm
Loza Maciza	2 cm

CONSIDERACIÓN EN EL PROYECTO

 Columnas
 fc 280 kg/cm2

 Vigas
 fc 210 kg/cm2

 Zapata
 fc 210 kg/cm2

 Loza maciza
 fc 210 kg/cm2

 Escalera
 fc 210 kg/cm2

DESCRIPCIÓN DEL PROYECTO

Pabellón: Número 3 Ubicación: Unión Perene Uso: Institución educativa Area techada de piso tipico: 271 m2 Numero de pisos: 2 Capaddad portante de suelo: 20 tn/m2 Tipo de suelo: suelo intermedio (S2)

BACHILLER GROUP

PABELLON N° 3

E-2

Número de proyecto	1
Fecha	2020
Dibujado por	Autor
Comprobado por	Verificador

Como se Indica.