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Abstract. In this article we characterize the polynomial maps F : Cn → Cn for which

F−1(0) is finite and their multiplicity µ(F ) is equal to n!Vn(Γ̃+(F )), where Γ̃+(F ) is the

global Newton polyhedron of F . As an application, we derive a characterization of those

polynomial maps whose multiplicity is maximal with respect to a fixed Newton filtration.

1. Introduction

Let F : Cn → Cn be a polynomial map such that F−1(0) is finite. We define the multiplicity

of F as the number

(1) µ(F ) = dimC
C[x1, . . . , xn]

I(F )

where I(F ) denotes the ideal of C[x1, . . . , xn] generated by the components of F . It is well-

known (see for instance [8, p. 150]) that, when F−1(0) is finite and n = p, we have

(2) dimC
C[x1, . . . , xn]

I(F )
=

∑
x∈F−1(0)

dimC
On,x
Ix(F )

where On,x is the ring of analytic function germs (Cn, x) → C and Ix(F ) is the ideal of On,x
generated by the germs at x of the components of F . We denote On,0 simply by On. Therefore,

the number µ(F ) gives the number of solutions of the system F (x) = 0 counting multiplicities.

In addition to the interest of µ(F ) in the study of polynomial systems in general, the

multiplicity of polynomial maps is a basic tool in singularity theory. For instance, in [14]

Kouchnirenko obtained an expression for the total Milnor number of a polynomial function

f ∈ C[x1, . . . , xn] in terms of the Newton polyhedron of f . We recall that if f ∈ C[x1, . . . , xn]

has a finite number of singularities, then the total Milnor number µ∞(f) of f is defined as

µ∞(f) = µ(∇f), where ∇f is the polynomial map Cn → Cn given by ∇f = ( ∂f
∂x1
, . . . , ∂f

∂xn
),

for all x ∈ Cn. The total Milnor number µ∞(f) of f has an important connection with the

topology of the generic fibres f−1(t), t ∈ C, as can be seen in the articles [1, 2, 12]. The

multiplicity µ(F ) is also involved in the estimation of the  Lojasiewicz exponent at infinity of

F , usually denoted by L∞(F ), as can be seen in [9, Theorem 7.3].
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Given a non-zero polynomial h ∈ C[x1, . . . , xn], let supp(h) denote the support of h (see

Definition 2.1). Let us fix a polynomial map F = (F1, . . . , Fn) : Cn → Cn. By the Bern-

stein–Khovanskii–Kouchnirenko bound (which is stated originally for Laurent polynomial

maps), we know that the number of isolated zeros of F in (C r {0})n, counted with mul-

tiplicities, is less than or equal to MVn(A1, . . . , An), where Ai denotes the convex hull in Rn

of supp(Fi), for all i, . . . , n, and MVn denotes mixed volume in Rn (see [8, p. 346]). We refer

to the article [18] of Rojas for a generalization of this result. By the main result of Li-Wang

shown in [16, Theorem 2.4] we know that if F−1(0) is finite, then µ(F ) 6 MVn(A0
1, . . . , A

0
n),

where A0
i is the convex hull in Rn of supp(Fi) ∪ {0}, for all i = 1, . . . , n.

Let Γ̃+(F ) denote the convex hull of supp(F1) ∪ · · · ∪ supp(Fn) ∪ {0}. We refer to this set

as the global Newton polyhedron of F (see Definition 2.1). Since µ(F ) does not change when

substituting each Fi by a generic C-linear combination of F1, . . . , Fn, for all i = 1, . . . , n, then

we conclude that

(3) µ(F ) 6 MVn(Γ̃+(F ), . . . , Γ̃+(F )) = n!Vn(Γ̃+(F )),

where the last equality is an elementary property of mixed volumes (see for instance [8, p. 338]).

In this article we characterize the polynomial maps F : Cn → Cn for which F−1(0) is finite and

µ(F ) = n!Vn(Γ̃+(F )). When this equality holds then we say that F has maximal multiplicity.

Our work in this article has been inspired by the results of the articles [3], [10] and [14].

Particularly by [3, Theorem 2.11], where the ideals I of On of finite colength such that e(I) =

n!Vn(R>0 \Γ+(I)) are characterized. Here Γ+(I) denotes the Newton polyhedron of I (see [3,

Definition 2.1]) and e(I) is the Samuel multiplicity of I. In the proof of this characterization

the Rees’ Multiplicity Theorem (see for instance [15, p. 222]) played a fundamental role.

In Section 2 we recall basic definitions and results that we will need along the article.

In particular, we recall the notion of special closure of a polynomial map introduced in [4].

Section 3 is devoted to showing the central result of the article (Theorem 3.2), where we

show that a given polynomial map F : Cn → Cn has maximal multiplicity if and only if F is

Newton non-degenerate at infinity (see Definition 2.4), which in turn is equivalent to saying

that the special closure of F determined by the monomials xk with k ∈ Γ̃+(F ), by the results

of [4]. Section 4 we introduce and characterize the notion of non-degeneracy with respect to

a global Newton polyhedron. This notion generalizes simultaneously the condition of Newton

non-degeneracy at infinity and the pre-weighted homogeneity of functions (see Definition 4.2).

As a consequence of the results of this section, we show a version for total Milnor numbers of

the main result of [10] about Milnor numbers of analytic functions and weighted homogeneous

filtrations.

2. Preliminary definitions and results

2.1. The global Newton filtration

We will follow the notation introduced in [4, Section 2]. Here we briefly recall some defini-

tions from [4]. We say a that a given a subset Γ̃+ ⊆ Rn
>0 is a global Newton polyhedron when
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there exists some A ⊆ Zn>0 such that Γ̃+ is equal to the convex hull of A ∪ {0}. In this case,

we will also denote Γ̃+ by Γ̃+(A).

Definition 2.1. Let us fix coordinates x1, . . . , xn ∈ Cn. For any k ∈ Zn>0, we denote the

monomial xk1
1 · · ·xknn by xk. Given a polynomial h ∈ C[x1, . . . , xn], h 6= 0, if h is written as

h =
∑

k akx
k, then the support of h is defined as the set of those k ∈ Zn>0 such that ak 6= 0.

We denote this set by supp(h). We set supp(0) = ∅.
For any h ∈ C[x1, . . . , xn], the global Newton polyhedron of h, denoted by Γ̃+(h), is defined

as Γ̃+(h) = Γ̃+(supp(h) ∪ {0}). If F = (F1, . . . , Fp) : Cn → Cp is a polynomial map, then

we define the support of F as supp(F ) = supp(F1) ∪ · · · ∪ supp(Fp). Thus, the global Newton

polyhedron of F , denoted by Γ̃+(F ) or by Γ̃+(F1, . . . , Fp), is defined as the convex hull of

Γ̃+(F1) ∪ · · · ∪ Γ̃+(Fp). Hence Γ̃+(F ) = Γ̃+(supp(F ) ∪ {0}).

If P is a non-empty compact subset of Rn and v ∈ Rn, then we define `(v, P ) = min{〈v, k〉 :

k ∈ P} and ∆(v, P ) = {k ∈ P : 〈v, k〉 = `(v, P )}, where 〈 , 〉 denotes the standard scalar

product in Rn. The sets of the form ∆(v, P ), for some v ∈ Rn r {0} are called faces of P . If

∆ is a face of P and v ∈ Rn r {0} verifies that ∆ = ∆(v, P ), then we say that v supports ∆.

The dimension of ∆, denoted by dim(∆), is defined as the minimum of the dimensions of the

affine subspaces of Rn containing ∆. The faces of P of dimension 0 are called vertices of P .

If Γ̃+ ⊆ Rn is a Newton polyhedron, then we denote by Γ̃ the union of all faces of Γ̃+

not containing the origin. We will refer to Γ̃ as the global boundary of Γ̃+. We say that Γ̃+

is convenient when Γ̃+ cuts any coordinate axis in a point different from the origin. Unless

otherwise stated, in the remaining section we will fix a convenient global Newton polyhedron

Γ̃+ ⊆ Rn
+.

Let ∆ be a face of Γ̃+ not containing the origin. Then, we denote by C(∆) the cone over ∆,

that is, the union of all half lines emanating from the origin and passing through some point

of ∆. We denote by R∆ the subring of C[x1, . . . , xn] formed by those h ∈ C[x1, . . . , xn] such

that supp(h) ⊆ C(∆).

A vector v ∈ Zn, v 6= 0, is called primitive when v is the vector of smallest length over all

vectors of the form λv, where λ > 0. Let F0(Γ̃+) denote the family of primitive vectors of Zn

supporting some face of Γ̃+ of dimension n− 1 not passing through the origin (see [4, Section

2]). Let us write F0(Γ̃+) = {w1, . . . , wr}, r > 1. Let us denote by MΓ̃ the least common

multiple of the set of positive integers {−`(wi, Γ̃+) : i = 1, . . . , r} (see [4, Lemma 2.3]). If

j ∈ {1, . . . , r}, let φj : Rn → R be the linear map defined by

φj(k) = MΓ̃

〈wj, k〉
`(wj, Γ̃+)

for all k ∈ Rn. Then, we define the map φΓ̃ : Rn
>0 → R by φ(k) = max16j6r φj(k), for all

k ∈ Rn
>0.

We will refer to φΓ̃ as the filtrating map associated to Γ̃. If no confusion arises, then we

denote MΓ̃ and φΓ̃ simply by M and φ, respectively. We observe that the restriction of φ to
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Γ̃ is constant and equal to M . Let us remark that

Γ̃+ =
{
k ∈ Rn

>0 : 〈wj, k〉 > `(wj, Γ̃+), for all j = 1, . . . r
}

=
{
k ∈ Rn

>0 : φ(k) 6M
}
,

where the second equality follows from the fact that `(wj, Γ̃+) < 0, for all j = 1, . . . , r.

Lemma 2.2. The filtrating map φ satisfies the following properties:

(a) φ(Zn>0) ⊆ Z>0.

(b) If k ∈ Rn
>0 and j0 ∈ {1, . . . , r}, then φ(k) = φj0(k) if and only if k ∈ C(∆(wj0 , Γ̃+)).

(c) φ is linear on each cone C(∆), where ∆ is any face of Γ̃+ not passing through the

origin.

(d) If a, b ∈ Rn, then φ(a+b) 6 φ(a)+φ(b) and equality holds if and only if a and b belong to

the same cone, that is, there exists a vector w ∈ F0(Γ̃+) such that a, b ∈ C(∆(w, Γ̃+)).

Proof. Let us prove (a). Since Γ̃+ is convenient, the line λk, λ > 0, intersects Γ̃. Then,

given a point k ∈ Zn>0, k 6= 0, we can write k as k = λk′, for some k′ ∈ Γ̃ and some λ > 0.

Since φ(k′) = M , there exists some j ∈ {1, . . . , r} such that 〈wj, k′〉 = `(wj, Γ̃+) < 0. Then

〈wj, k〉 < 0 and this implies that φ(k) > 0.

Let us prove (b). As before, let us write k as k = λk′, for some k′ ∈ Γ̃ and some λ > 0. By

the definition of φ, we have φ(k) = φj0(k) if and only if

(4)
〈k′, wj〉
`(wj, Γ̃+)

6
〈k′, wj0〉
`(wj0 , Γ̃+)

,

for all j ∈ {1, . . . , r}. Since `(wj0 , Γ̃+) < 0, we have 〈k′, wj0〉/`(wj0 , Γ̃+) 6 1. On the other

hand, the condition k′ ∈ Γ̃ implies the equality `(wj, Γ̃+) = 〈wj, k′〉, for some j ∈ {1, . . . , r}.
Then (4) is equivalent to saying that 〈k′, wj0〉/`(wj0 , Γ̃+) = 1. In particular, k′ ∈ ∆(wj0 , Γ̃+)

and the result follows. Items (c) and (d) are immediate consequences of item (b). �

Given an h ∈ C[x1, . . . xn], h 6= 0, the degree of h with respect to Γ̃+ is defined as

νΓ̃(h) = max {φ(k) : k ∈ supp(h)} .

When h = 0, then we set νΓ̃(0) = 0. Thus, we have a map νΓ̃ : C[x1, . . . , xn]→ Z>0. If there

is no risk of confusion, then we will denote νΓ̃ simply by ν.

Let us remark that, when Γ̃+ is equal to the standard n-simplex, that is, when Γ̃+ =

Γ̃+(x1, . . . , xn), then νΓ̃(h) = max{k1 + · · · + kn : k ∈ supp(h)}. Therefore, in this case νΓ̃(h)

coincides with the usual notion of degree of h, for any h ∈ C[x1, . . . , xn].

Let us define, for all r ∈ Z>0, the following set of polynomials:

(5) Br =
{
h ∈ C[x1, . . . , xn] : ν(h) 6 r

}
.

In particular, B0 = C and BM = {f ∈ C[x1, . . . , xn] : supp(f) ⊆ Γ̃+}. By the properties of φ,

it is immediate to check the following:

(a) Br is a finite dimensional vector subspace of C[x1, . . . , xn], for all r > 0;

(b) Br ⊆ Br+1, for all r > 0;
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(c) BrBr′ ⊆ Br+r′ , for all r, r′ > 0

(d) Γ̃+(Br) ⊆ r
M

Γ̃+ and equality holds if and only if Vn(Γ̃+(Br)) = ( r
M

)nVn(Γ̃+), where

Vn denotes n-dimensional volume.

We observe that ν determines and is determined by the collection of subspaces {Br}r>0.

We refer both to the map ν and the collection of subspaces {Br}r>0 as the Newton filtration

of C[x1, . . . , xn] induced by Γ̃+.

Let us remark that we have exposed the notion of Newton filtration induced by Γ̃+ in

a slightly different way from Kouchnirenko [14, Section 5.9]. That is, the filtrating map

considered in [14, Section 5.9] equals −φ and thus in [14] the corresponding collection of

subspaces is decreasing and indexed by Z60.

2.2. The special closure of a polynomial map

Let F : Cn → Cp be a polynomial map. We will say that F is finite when F−1(0) is finite.

By (1), the multiplicity of F is well-defined when F is finite. Let us denote dimCOn,x/Ix(F )

by µx(F ), for any x ∈ F−1(0). As remarked in (2), it is known that µ(F ) =
∑

x∈F−1(0) µx(F ).

If h ∈ C[x1, . . . , xn], then we say that h is special with respect to F (see [5, Definition 4.1])

when there exists some positive constants C and M such that

|h(x)| 6 C‖F (x)‖

for all x ∈ Cn for which ‖x‖ > M . Let us denote by Sp(F ) the set of special elements with

respect to F . We refer to Sp(F ) as the special closure of F . The elements of Sp(F ) can be

characterized in terms of the notion of multiplicity.

Theorem 2.3. [4] Let F : Cn → Cn be a finite polynomial map and let h ∈ C[x1, . . . , xn],

h 6= 0. Then the following conditions are equivalent:

(a) h is special with respect to F ;

(b) there exists some δ > 0 such that for all α ∈ B(0; δ), the map F + hα is finite and

µ(F ) = µ(F + hα).

Let A ⊆ Rn
>0. If h ∈ C[x1, . . . , xn] and h is written as h =

∑
akx

k, then we denote by hA
the sum of all terms akx

k such that k ∈ supp(h)∩A. If supp(h)∩A = ∅, then we set hA = 0.

The following definition will be fundamental for the objectives of this article.

Definition 2.4. Let F = (F1, . . . , Fp) : Cn → Cp be a polynomial map. The map F is said

to be Newton non-degenerate at infinity when, for any face ∆ of Γ̃+(F ) not containing the

origin, the following inclusion holds:

(6)
{
x ∈ Cn : (F1)∆(x) = · · · = (Fp)∆(x) = 0

}
⊆ {x ∈ Cn : x1 · · · xn = 0}.

Under the conditions of the above definition, we will also denote the polynomial (Fi)∆ by

Fi,∆, for any i = 1, . . . , p, and any face ∆ of Γ̃+.

Let us denote by S(F ) the set of those k ∈ Zn>0 such that xk ∈ Sp(F ). By [4, Lemma 3.4] we

know that S(F ) ⊆ Γ̃+(F ). Next we recall as result from [4]. This characterizes the equality

S(F ) = Γ̃+(F ).
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Theorem 2.5. [4] Let F : Cn → Cp be a polynomial map such that Γ̃+(F ) is convenient.

Then the following conditions are equivalent:

(a) F is Newton non-degenerate at infinity.

(b) S(F ) = Γ̃+(F ) ∩ Zn>0.

(c) Sp(F ) =
{
h ∈ C[x1, . . . , xn] : supp(h) ⊆ Γ̃+(F )

}
.

As will be shown in the next section, when p = n and F is finite, the condition µ(F ) =

n!Vn(Γ̃+(F )) is also equivalent to any of the conditions (a), (b) or (c) of Theorem 2.5 (see

Corollary 3.3).

3. Multiplicity of polynomial maps and convex bodies

Along this section, let us fix a convenient Newton polyhedron Γ̃+ ⊆ Rn
>0. Let {Br}r>0 be

the Newton filtration of C[x1, . . . , xn] induced by Γ̃+ (see (5)). Therefore, we can consider the

graded ring R =
⊕

r>0Rr, where Rr = Br/Br−1, for all r > 0, and we fix B−1 = {0}. For any

f ∈ C[x1, . . . , xn], let us denote by in(f) the image of f in R, that is, in(f) = f + Bν(f)−1.

Let ν = νΓ̃. We remark that the product operation in R is defined as follows. If f, g ∈
C[x1, . . . , xn] and ν(f) = r, ν(g) = s, then in(f) in(g) = fg + Br+s−1. By Lemma 2.2, we

have that this product is not zero if and only if ν(fg) = ν(f) + ν(g), which is to say that

ν(f) and ν(g) are attained at the same cone, by Lemma 2.2. We refer to R as the graded ring

associated to ν.

We say that a given condition depending on a parameter x ∈ Cn holds for all ‖x‖ � 1 when

there exists some open neighbourhood U of 0 ∈ Cn such that the said condition holds for all

x ∈ U .

Lemma 3.1. Let F : Cn → Cn be a finite map and let h ∈ C[x1, . . . , xn], h 6= 0. Then the

map Fα = F + αh is finite and µ(F ) 6 µ(Fα), for all α ∈ Cn, ‖α‖ � 1.

Proof. Let q : Cn × Cn → Cn × Cn be the map given by q(x, α) = (F (x) + αh, α), for all

(x, α) ∈ Cn × Cn. Let us define the sets

S =
{

(x, α) ∈ Cn × Cn : dimx F
−1
α (0) > 1

}
(7)

T =
{

(x, α) ∈ Cn × Cn : dim(x,α) q
−1(q(x, α)) > 1

}
.(8)

We remark that, for a given (x, α) ∈ Cn ×Cn, the condition dimx F
−1
α (0) > 1 is equivalent to

saying that µx(Fα) =∞. Let us observe that

(9) S = T ∩ {(x, α) ∈ Cn × Cn : Fα(x) = 0} .

By Chevalley’s Theorem (see [11, Théorème 13.1.3, p.189]), the set T is Zariski closed. Hence

S is Zariski closed. In particular Fα is finite, for all ‖α‖ � 1, since we assume that F is finite.

By [6, Proposition 2.3(ii)], µ(Fα) is a lower semi-continuous function. Hence µ(F ) 6 µ(Fα)

for all ‖α‖ � 1. �
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Theorem 3.2. Let F = (F1, . . . , Fn) : Cn → Cn be a polynomial map such that supp(Fi) ⊆ Γ̃+,

for all i = 1, . . . , n, and F is finite. Then

(10) µ(F ) 6 n!Vn(Γ̃+)

and equality holds if and only if F is Newton non-degenerate at infinity and Γ̃+(F ) = Γ̃+.

Proof. As shown in (3), inequality (10) follows as a direct application of [16, Theorem 2.4].

Let us suppose that F is Newton non-degenerate at infinity and Γ̃+(F ) = Γ̃+. In order to

prove that µ(F ) 6 n!Vn(Γ̃+) we will apply a series of steps which are analogous to the steps

performed by Kouchnirenko in the proof of [14, Théorème AI, p. 11].

If q ∈ {0, 1, . . . , n − 1}, then we denote by Γ̃q the family of all faces of Γ̃+ of dimension q

not containing the origin. Let φ = φΓ̃ and let ν = νΓ̃. Let us also denote MΓ̃ by M . Let us

denote by R the ring C[x1, . . . , xn] and let R be the graded ring associated to ν.

Let Fi = in(Fi), for all i = 1, . . . , n. Let I be the ideal of R generated by F1, . . . ,Fn.

Let us consider the Koszul complex K associated to F1, . . . ,Fn extended with the projection

R→ R/I:

(K) 0 // R(n
n) // R( n

n−1) // · · · // R(n
1) // R // R/I.

We claim that the complex K is exact in positive dimensions. Let us prove this. If ∆ is any

face of Γ̃+ not containing the origin, then let R∆ be the graded ring given by

R∆ =
⊕
r>0

R∆,r with R∆,r =
Br ∩R∆

Br−1 ∩R∆

for all r > 1.

Let Fi,∆ denote the image of Fi,∆ in R∆, for all i = 1, . . . , n. Let K∆ be the Koszul complex

of the elements F1,∆, . . . ,Fn,∆ in R∆:

(K∆) 0 // R
(n
n)

∆
// R

( n
n−1)

∆
// · · · // R

(n
1)

∆
// R∆.

Given any integer q = 0, 1, . . . , n− 1, let us denote by Cq the direct sum of all graded rings

R∆, where ∆ varies in Γ̃q. We denote by Kq the direct sum of the complexes K∆ over all faces

∆ ∈ Γ̃q. Hence, for any q = 0, 1, . . . , n− 1, we obtain a complex

(Kq) 0 // C
(n
n)
q

// C
( n
n−1)
q

// · · · // C
(n

1)
q

// Cq.

By [14, Proposition 2.6], there exists an exact sequence of R-modules respecting the grad-

uations

(C) 0 // R // Cn−1
// Cn−2

// · · · // C1
// C0

// 0

Therefore we can construct the commutative diagram shown in Figure 1, where each row

is formed by
(
n
j

)
copies of the complex C, for j = 1, . . . , n, and the columns are given by the

complexes K,Kn−1, . . . ,K1,K0, respectively.
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R/I

0 // R

OO

// Cn−1
// Cn−2

// · · · // C0
// 0

0 // R(n
1)

OO

// C
(n

1)
n−1

OO

// C
(n

1)
n−2

OO

// · · · // C
(n

1)
0

OO

// 0

0 // R(n
2)

OO

// C
(n

2)
n−1

OO

// C
(n

2)
n−2

OO

// · · · // C
(n

2)
0

OO

// 0

...

OO

...

OO

...

OO

...

OO

0 // R( n
n−1)

OO

// C
(n
n)
n−1

OO

// C
( n
n−1)
n−2

OO

// · · · // C
( n
n−1)

0

OO

// 0

0 // R(n
n)

OO

// C
(n
n)
n−1

OO

// C
(n
n)
n−2

OO

// · · · // C
(n
n)

0

OO

// 0

0

OO

0

OO

0

OO

0

OO

Figure 1.

By a simple diagram chase argument, we conclude that the complex K is exact provided

that the columns of the diagram of Figure 1 are exact under the dotted line. That is, for any

q ∈ {0, 1, . . . , n− 1}, the complexes Kq are exact in dimensions > n− q.
The latter condition is equivalent to saying that the following part K′∆ of the complex K∆

is exact

(K′∆) 0 // R
(n
n)

∆
// R

( n
n−1)

∆
// · · · // R

( n
n−q)

∆

for any face ∆ ∈ Γ̃q and for all q = 0, 1, . . . , n− 1.

Let us fix any q ∈ {0, 1, . . . , n− 1} and let us fix a face ∆ ∈ Γ̃q. Let I∆ be the ideal of R∆

generated by F1,∆, . . . ,Fn,∆. The ring R∆ is Cohen-Macaulay ring of dimension q+1 (see [13]

or [14, Théorème 5.6]). Thus, since I∆ has finite colength, the depth in R∆ of I∆ is q+ 1. By

[17, Theorem 16.8], which is also known as the grade-sensitivity of the Koszul complex (see

also [20, Proposition 5.2]), the homology of K∆ is zero in dimensions > n− q. Therefore the

complex K is exact.
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The exactness of K implies that the Hilbert series of R/I is expressed as

(11) HR/I(t) = (1− tM)nHR(t).

Moreover, the exactness of C leads to the following expression for HR(t):

(12) HR(t) =
n−1∑
q=0

(−1)n+q+1HCq(t) =
n−2∑
q=0

(−1)n+q+1
∑

∆∈Γ̃q

HR∆
(t) +

∑
∆∈Γ̃n−1

HR∆
(t).

From [14, Lemme 2.9] we know that HR∆
(t) is a rational function and that t = 1 is a pole

of HR∆
(t) of order q + 1, for any ∆ ∈ Γ̃q and any q = 0, . . . , n − 1. Moreover, if ∆ ∈ Γ̃n−1,

then limt→1(1− tM)nHR∆
(t) = n!Vn(P (∆)), where P (∆) denotes the pyramid with vertex at

0 and basis equal to ∆. Applying this result and (11) and (12) we obtain

dimC
R

I
= lim

t→1
(1− tM)nHR(t)

= lim
t→1

(1− tM)n

 ∑
∆∈Γ̃n−1

HR∆
(t) +

n−2∑
q=0

(−1)n+q+1
∑

∆∈Γ̃q

HR∆
(t)


= lim

t→1

∑
∆∈Γ̃n−1

(1− tM)nHR∆
(t) + lim

t→1

n−2∑
q=0

(−1)n+q+1
∑

∆∈Γ̃q

(
(1− tM)nHR∆

(t)
)

=
∑

∆∈Γ̃n−1

n!Vn(P (∆)) = n!Vn(Γ̃+).(13)

By [14, Théorème 4.1(i)], the exactness of K in dimension 1 implies the following isomor-

phism of graded C-modules:

(14)
⊕
r>0

Br + I

Br−1 + I
∼=

R

I
.

Since the ring R/I has finite length, the above isomorphism implies that there exists some

s ∈ Z>0 such that Bs + I = Bs+1 + I = · · · = R. In particular

(15) dimC
R

I
= dimC

(⊕
r>0

Br + I

Br−1 + I

)
=

s∑
`=0

dimC
B` + I

B`−1 + I
= dimC

R

I
.

By joining (13) and (15) we finally obtain that

µ(F ) = dimC
R

I
= dimC

R

I
= n!Vn(Γ̃+).

Let us see the converse. Let us suppose that µ(F ) = n!Vn(Γ̃+) and that F is not Newton

non-degenerate at infinity. By Theorem 2.5, there exists some k ∈ v(Γ̃+) such that xk /∈ Sp(F ).

By Lemma 3.1, there exists some ε > 0 such that µ(F +αxk) is finite and µ(F ) 6 µ(F +αxk),

for all α ∈ B(0; ε).
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The condition xk /∈ Sp(F ), implies, by Theorem 2.3, that there exists some α0 ∈ B(0; ε)

such that

µ(F ) < µ(F + α0x
k) 6 n!Vn(Γ̃+)

where we have applied (10) in the last inequality. Hence µ(F ) < n!Vn(Γ̃+), which is a

contradiction. Thus the result follows. �

As an immediate application of Theorem 2.5 and Theorem 3.2 we obtain the following result.

Corollary 3.3. Let F : Cn → Cn be a finite polynomial map. Then the following conditions

are equivalent:

(a) F is Newton non-degenerate at infinity.

(b) S(F ) = Γ̃+(F ) ∩ Zn>0.

(c) Sp(F ) =
{
h ∈ K[x1, . . . , xn] : supp(h) ⊆ Γ̃+(F )

}
(d) µ(F ) = n!Vn(Γ̃+(F )).

4. Non-degeneracy with respect to a global Newton polyhedron

The objective of this section is to obtain a characterization of an important class of polyno-

mial maps Cn → Cn that extends the class of pre-weighted homogeneous maps (see Definition

4.2) and the maps which are Newton non-degeneracy at infinity. In particular, we obtain a

version of [3, Theorem 3.3] in the ring of polynomials C[x1, . . . , xn] and, in turn, a version for

total Milnor numbers of the main result of [10].

Motivated by [3, Section 3] we introduce the following concept.

Definition 4.1. Let Γ̃+ ⊆ Rn
>0 be a convenient global Newton polyhedron. Let φ = φΓ̃ and

ν = νΓ̃. Let h ∈ C[x1, . . . , xn], h 6= 0. Let us suppose that h is written as h =
∑

k akx
k. Let ∆

be a face of Γ̃+ not passing through the origin. The initial or principal part of h over ∆ is the

polynomial obtained as the sum of all terms akx
k such that k ∈ C(∆) and φ(k) = ν(h). We

will denote this polynomial by qΓ̃,∆(h). If no such terms exist or h = 0, then we set q∆(h) = 0.

We observe that, if h∆ 6= 0, then h∆ = q∆(h) if and only if ν(h) = M . If there is no risk of

confusion, then we will denote qΓ̃,∆(h) simply by q∆(h).

Let F = (F1, . . . , Fp) : Cn → Cp be a polynomial map. We say that F is non-degenerate

with respect to Γ̃+ when

(16)
{
x ∈ Cn : q∆(F1)(x) = · · · = q∆(Fp)(x) = 0

}
⊆ {x ∈ Cn : x1 · · ·xn = 0},

for any face ∆ of Γ̃+ not containing the origin.

The definition of non-degeneracy with respect to Γ̃+ is specially significant when p = n

and constitutes a generalization of the notion of pre-weighted homogeneity of maps Cn → Cp,

which we now recall.

Definition 4.2. Let w ∈ Zn>1 be a primitive vector and let h ∈ C[x1, . . . , xn]. Let us suppose

that h is written as h =
∑

k akx
k. Let F = (F1, . . . , Fp) : Cn → Cp be a polynomial map.
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(a) We will denote the integer max{〈w, k〉 : k ∈ supp(h)} by dw(h). Let us define the

principal part of h at infinity with respect to w, denoted by qw(h), as the sum of those

terms akx
k such that 〈w, k〉 = dw(h). If h = 0, then we set dw(h) = 0 and qw(h) = 0.

We define qw(F ) = (qw(F1), . . . , qw(Fp)) and dw(F ) = (dw(F1), . . . , dw(Fp)).

(b) Let d = (d1, . . . , dp) ∈ Zp>1. If Fi is weighted homogeneous of degree di, for all i =

1, . . . , p, then F is called weighted-homogeneous with respect to w with vector of degrees

d. If p > n and (qw(F ))−1(0) = {0} then we say that F is pre-weighted homogeneous

with respect to w.

(c) Let d ∈ Z>1. We say that h is weighted-homogeneous of degree d with respect to w

when h 6= 0 and supp(h) is contained in the hyperplane of equation 〈w, k〉 = d. That

is, when qw(h) = h and dw(h) = d. We say that h is pre-weighted homogeneous when

qw(h) has at most a finite number of singularities, or equivalently, when the gradient

map ∇ qw(h) : Cn → Cn is finite.

We refer to [7, 19] for interesting properties of pre-weighted homogeneous maps. Let us

remark that if F : Cn → Cn is weighted homogeneous with respect to w, then F−1(0) is finite

if and only if F−1(0) = {0}.
Let w = (w1, . . . , wn) ∈ Zn>1 be a primitive vector. Let us denote by Γ̃w+ the global Newton

polyhedron Γ̃+(x
w1···wn/w1

1 , . . . , x
w1···wn/wn
n ) and by Γ̃w the global boundary of Γ̃w+. We remark

that Γ̃w equals the unique face of Γ̃w+ of dimension n − 1. This face is supported by −w and

is equal to the convex hull of the points belonging to the intersection of the hyperplane of

equation w1k1 + · · ·+ wnkn = w1 · · ·wn with the union of the coordinate axis.

We will apply the following well-known result of Kouchnirenko [14] in Corollary 4.4, which

in turn is applied in the proof of Corollary 4.5.

Theorem 4.3. [14, Théorème 6.2, p. 26] Let ∆ ⊆ Rn
>0 be a lattice polytope of dimension

q ∈ {0, 1, . . . , n−1}. Let us suppose that ∆ is not contained in any linear subspace of dimension

q. Let g1, . . . , gs ∈ C[x1, . . . , xn] such that supp(gi) ⊆ ∆, for all i = 1, . . . , s. Then the

following conditions are equivalent:

(a) the ideal of R∆ generated by g1, . . . , gs has finite colength in R∆;

(b) for all faces ∆′ ⊆ ∆, the set of common zeros of (g1)∆′ , . . . , (gs)∆′ is contained in

{x ∈ Cn : x1 · · · xn = 0}.

Let us fix a subset I ⊆ {1, . . . , n}, I 6= ∅. We define

Kn
I = {x ∈ Kn : xi = 0, for all i /∈ I}.

If S is any subset of Kn, then we denote the intersection S ∩ Kn
I by SI. Given a polynomial

h ∈ C[x1, . . . , xn], if we suppose that h is written as h =
∑

k akx
k, then we denote by hI the

sum of all terms akx
k such that k ∈ supp(h) ∩ Rn

I .

Corollary 4.4. Let w ∈ Z>1 be a primitive vector. Let F = (F1, . . . , Fn) : Cn → Cn be a

polynomial map such that F is weighted homogeneous with respect to w. Then F−1(0) = {0}
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if and only if, for all I ⊆ {1, . . . , n}, I 6= ∅, we have {x ∈ Cn : F I
1 (x) = · · · = F I

n(x) = 0} ⊆
{x ∈ Cn : x1 · · ·xn = 0}.

Proof. Let ai = dw(Fi), for all i = 1, . . . , n, and let a = a1 · · · an. Let us consider the function

Gi = F
a/ai
i , for all i = 1, . . . , n, and the map G = (G1, . . . , Gn). It is clear that G−1(0) = {0}

if and only if F−1(0) = {0}. Let ∆ = {k ∈ Rn
>0 : |k| = a}. Then, we can apply Theorem

4.3 to ∆ and G1, . . . , Gn. Let us remark that R∆ = On. The set of faces of ∆ is given by

{∆I : I ⊆ {1, . . . , n}, |I| 6= ∅}. Moreover, we have

(Gi)∆I = (F
a/ai
i )∆I = ((Fi)∆I)a/ai = (F I

i )a/ai

for all i = 1, . . . , n. Then the result follows as an immediate application of Theorem 4.3 to ∆

and G1, . . . , Gn. �

As we will see in the following two results, non-degeneracy of maps with respect to a fixed

convenient global Newton polyhedron is a condition that includes both Newton non-degeneracy

at infinity and pre-weighted homogeneity of maps.

Corollary 4.5. Let F = (F1, . . . , Fp) : Cn → Cp be a polynomial map. Let w ∈ Zn>1 be a

primitive vector and let d = (d1, . . . , dp) ∈ Zp>1. Then the following conditions are equivalent:

(a) F is pre-weighted homogeneous with respect to w and d = dw(F ).

(b) F is non-degenerate with respect to Γ̃w+ and νΓ̃w(Fi) = di, for all i = 1, . . . , p.

Proof. Let ∆ = ∆(−w, Γ̃+). Since F0(Γ̃w+) = {−w}, the filtrating map τ : Rn
>0 → R associated

to Γ̃w+ is given by τ(k) = 〈w, k〉, for all k ∈ Rn
>0. Therefore qw(Fi) = q∆(Fi), for all i = 1, . . . , p.

Then the result follows as direct application of Corollary 4.4. �

Remark 4.6. It is immediate to deduce that if F : Cn → Cp is a polynomial map such that

F is Newton non-degenerate at infinity, then F is non-degenerate with respect to Γ̃+(F ). An

easy example showing that the converse is not true is given by the map F : C2 → C2 defined

by F (x, y) = (x + 2y, x2 − y2). In the next result we will see when the equivalence between

both concepts holds, in the case n = p.

Proposition 4.7. Let F : Cn → Cn be a polynomial map such that F−1(0) is finite and

F (0) = 0. Let Γ̃+ = Γ̃+(F ) and let ν = νΓ̃(F ). Then the following conditions are equivalent:

(a) F is Newton non-degenerate at infinity

(b) F is non-degenerate with respect to Γ̃+(F ) and νΓ̃(F1) = · · · = νΓ̃(Fn).

Proof. Let e1, . . . , en denote the canonical basis in Cn. Let us suppose that F is not convenient.

Then there exists some i ∈ {1, . . . , n} such that supp(F ) does not contain any vector of the

form rei, for some r > 0. In particular, we conclude that F (αei) = 0, for all α ∈ C,

since F (0) = 0. This contradicts the condition of finiteness of F−1(0). Therefore Γ̃+(F ) is

convenient.

Let us prove (a)⇒ (b). Let ∆ be a face of Γ̃+ of dimension n−1 such that 0 /∈ ∆. It is known

that R∆ is a Cohen-Macaulay ring of dimension n (see [13] or [14, Théorème 5.6]). Since F is
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Newton non-degenerate at infinity, the solutions of the system (F1)∆′(x) = · · · = (Fn)∆′(x) = 0

are contained in {x ∈ Cn : x1 · · ·xn = 0}, for any face ∆′ of Γ̃+ such that ∆′ ⊆ ∆. In

particular, the ideal I generated by {(F1)∆, . . . , (Fn)∆} in R∆ has finite colength in R∆ (see

[14, Théorème 6.2]), which implies that I is generated by al least n non-zero elements of R∆.

Then (Fi)∆ 6= 0, for all i = 1, . . . , n. In particular we have νΓ̃(F1) = · · · = νΓ̃(Fn) and thus

(b) follows.

The implication (b) ⇒ (a) is immediate since the condition νΓ̃(F1) = · · · = νΓ̃(Fn) implies

that q∆(Fi) = (Fi)∆, for all i = 1, . . . , n and all faces ∆ of Γ̃+ such that 0 /∈ ∆. �

In the remaining section, let us fix a convenient global Newton polyhedron Γ̃+ ⊆ Rn
>0. Let

φ = φΓ̃, ν = νΓ̃ and M = MΓ̃. Let {Br}r>0 be the corresponding family of subspaces defined

in (5).

Proposition 4.8. Let F = (F1, . . . , Fn) : Cn → Cn be a finite polynomial map. Let di =

νΓ̃(Fi), for all i = 1, . . . , n, and let d = d1 · · · dn. Then the following conditions are equivalent:

(a) F is non-degenerate with respect to Γ̃+.

(b) The map (F
d/d1

1 , . . . , F
d/dn
n ) is Newton non-degenerate at infinity and its global Newton

polyhedron is equal to d
M

Γ̃+.

(c) There exists a vector a = (a1, . . . , an) ∈ Zn>1 such that the map F a = (F a1
1 , . . . , F an

n ) :

Cn → Cn verifies that Γ̃+(F a) is homothetic to Γ̃+ and F a is Newton non-degenerate

at infinity.

Proof. Let ν = νΓ̃. Let us prove (a) ⇒ (b). Let ai = d/di, for all i = 1, . . . , n, and a =

(a1, . . . , an). Clearly we have the inclusions

(17) Γ̃+(F ai
i ) ⊆ Γ̃+(F a) ⊆ Γ̃+(Bd) ⊆

d

M
Γ̃+

for all i = 1, . . . , n.

Let k be a vertex of Γ̃+. By condition (a), there exists some i ∈ {1, . . . , n} such that

q{k}(Fi) 6= 0. This means that there exists some k′ ∈ supp(Fi) such that φ(k′) = di and there

exists some λ > 0 such that k′ = λk. Since di = φ(k′) = φ(λk) = λφ(k) = λM , we obtain

λ = di
M

. In particular aik
′ = ai

di
M
k = d

M
k. Then, for any vertex k of Γ̃+, we have d

M
k belongs

to supp(F ai
i ), for some i ∈ {1, . . . , n}. This fact together with (17) shows that

(18) Γ̃+(F a) =
d

M
Γ̃+ = Γ̃+(Bd).

Let ∆ be a face of Γ̃+(F a). By (18) there exists a face ∆′ of Γ̃+ such that ∆ = d
M

∆′. Using

Definition 4.1, it is immediate to see that (q∆′(Fi))
ai = (F ai

i )∆, for all i = 1, . . . , n. Thus

condition (b) follows.

The implication (b) ⇒ (c) is obvious. Let us prove that (c) ⇒ (a). Let a = (a1, . . . , an) ∈
Zn>1 and µ > 0 such that Γ̃+(F a) = µΓ̃+. Hence, if ∆ ⊆ Γ̃, then ∆ is a face of Γ̃+ if and only

if µ∆ is a face of Γ̃+(F a). Then, the implication follows by observing that, if ∆ is a face of

Γ̃+ not passing through the origin, then (q∆(Fi))
ai = (F ai

i )µ∆, for all i = 1, . . . , n. �
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Theorem 4.9. Let F = (F1, . . . , Fn) : Cn → Cn be a polynomial map such that F−1(0) is

finite. Let di = ν(Fi), for all i = 1, . . . , n. Then

(19) µ(F ) 6
d1 · · · dn
Mn

n!Vn(Γ̃+).

and equality holds if and only if F is non-degenerate with respect to Γ̃+.

Proof. Let d = d1 · · · dn. Let us consider the map G = (G1, . . . , Gn) : Cn → Cn given by

Gi = F
d/di
i , for all i = 1, . . . , n. Then G has also finite multiplicity and this is given by

(20) µ(G) = dimC
C[x1, . . . , xn]

I(G)
=

d

d1

· · · d
dn

dimC
C[x1, . . . , xn]

I(F )
= dn−1µ(F ).

Let us observe that ν(Gi) = d, for all i = 1, . . . , n. Then Γ̃+(G) ⊆ Γ̃+(Bd) ⊆ d
M

Γ̃+. Therefore,

applying inequality (10), we obtain that

(21) µ(G) 6 n!Vn(Γ̃+(G)) 6 n!Vn(Γ̃+(Bd)) 6
dn

Mn
n!Vn(Γ̃+).

Inequality (19) follows by joining (20) and (21). By relation (21), we have that equality holds

in (19) if and only if µ(G) = dn

Mnn!Vn(Γ̃+), which is equivalent to saying that all inequalities

of (21) become equalities. In turn, this is equivalent to saying that the following holds:

Γ̃+(G) = Γ̃+(Bd) = d
M

Γ̃+ and G is Newton non-degenerate (by Theorem 3.2). Thus, by

Proposition 4.8, we obtain the desired equivalence. �

When equality holds in (19), then we also say that F has maximal multiplicity with respect

to ν. The particularization to weighted homogeneous filtrations of the previous result is shown

in the following result.

Corollary 4.10. Let F = (F1, . . . , Fn) : Cn → Cn be a finite polynomial map. Let us fix a

primitive vector w = (w1, . . . , wn) ∈ Zn>1 and let di = dw(Fi), for all i = 1, . . . , n. Then

(22) µ(F ) 6
d1 · · · dn
w1 · · ·wn

and equality holds if and only if (qw(F ))−1(0) = {0}.

Proof. Inequality (22) follows by applying Theorem 4.9 to F and Γ̃w+. Equality holds in (22)

if and only if F is Newton non-degenerate with respect to Γ̃w+, which is equivalent to saying

that (qw(F ))−1(0) = {0}, by Corollary 4.5. �

The application of Corollary 4.10 to gradient maps leads to the following result, which is

the version for total Milnor numbers of the main result of Furuya-Tomari in [10].

Corollary 4.11. Let f ∈ C[x1, . . . , xn] with a finite number of singularities and let us fix a

primitive vector w = (w1, . . . , wn) ∈ Zn>1. Let d = dw(f). Then

(23) µ∞(f) 6
(d− w1) · · · (d− wn)

w1 · · ·wn
.

Moreover, the following conditions are equivalent:
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(a) f is pre-weighted homogeneous with respect to w.

(b) (qw(∇f))−1(0) = {0} and dw(fxi) = dw(f)− wi, for all i = 1, . . . , n.

(c) equality holds in (23).

Proof. Let fxi = ∂f/∂xi, for all i = 1, . . . , n, and let d = dw(f). Since f has a finite

number of singularities, given an index i ∈ {1, . . . , n}, then fxi 6= 0 and thus, there exists

some k ∈ supp(f) such that ki > 0 and k − ei ∈ supp(qw(fxi)). In particular dw(fxi) =

〈k, w〉 − wi 6 dw(f)− wi. Therefore

(24) µ∞(f) 6
dw(fx1) · · · dw(fxn)

w1 · · ·wn
6

(d− w1) · · · (d− wn)

w1 · · ·wn
where the first inequality is a direct application of (22). Hence (23) is proven.

The equivalence between (a) and (b) easily follows by observing that, under the conditions

of any of both items, we have

∂ qw(f)

∂xi
= qw

(
∂f

∂xi

)
for all i = 1, . . . , n. The equivalence between (b) and (c) follows by a direct application of

(24) and Corollary 4.10. �
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[4] C. Bivià-Ausina and J. A. C. Huarcaya, The special closure of polynomial maps and global non-degeneracy,

Mediterr. J. Math 14, No. 2 (2017), Art. 71, 21 pp. 1, 2.1, 2.1, 2.3, 2.2, 2.5
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