

FACULTAD DE INGENIERÍA

Carrera de Ingeniería Industrial

MEJORAS EN LOS PROCESOS DE CHANCADO DE MINERAL COBRE EN TINTAYA MEDIANTE LA MODERNIZACIÓN DEL SISTEMA DE CONTROL

Tesis para optar el Título Profesional de Ingeniero Industrial

ELIZABETH MARÍA GAYOSO VELÁSQUEZ

Asesor: Manuel Martín Ego-Aguirre Madrid

> Lima – Perú 2018

JURADO DE LA SUSTENTACION ORAL

Presi	dente
Jura	do 1
Jura	do 2
Entregado el: 17 de Julio del 2018	Aprobado por:
Graduando Elizabeth María Gayoso Velásquez	Asesor de Tesis: Manuel Martín Ego-Aguirre Madrid

UNIVERSIDAD SAN IGNACIO DE LOYOLA
FACULTAD DE INGENIERIA

DECLARACIÓN DE AUTENTICIDAD

Yo, Elizabeth María Gayoso Velásquez, identificado/a con DNI Nº 42524569.

Bachiller del Programa Académico de la Carrera de Ingeniería Industrial de la

Facultad de Ingeniería de la Universidad San Ignacio de Loyola, presento mi

Informe Final – Trabajo de Suficiencia Profesional titulada:

MEJORAS EN LOS PROCESOS DE CHANCADO DE MINERAL COBRE EN TINTAYA

MEDIANTE LA MODERNIZACIÓN DEL SISTEMA DE CONTROL

Declaro en honor a la verdad, que el trabajo de Informe Final - Trabajo de

Suficiencia Profesional es de mi autoría; que los datos, los resultados y su análisis

e interpretación, constituyen mi aporte. Todas las referencias han sido

debidamente consultadas y reconocidas en la investigación.

En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad

u ocultamiento de la información aportada. Por todas las afirmaciones, ratifico lo

expresado, a través de mi firma correspondiente.

Lima, 17 de Julio de 2018.

Elizabeth María Gayoso Velásquez

DNI N° 42524569

DEDICATORIA

A Carlos, mi esposo, por su apoyo incondicional y por siempre creer en mí.

ÍNDICE GENERAL

ÍNDICE DE FIGURAS	7
ÍNDICE DE TABLAS	9
INTRODUCCIÓN	10
GENERALIDADES DE LA EMPRESA	11
Datos generales	11
Nombre o razón social de la empresa	11
Ubicación de la empresa	11
Giro de la empresa	11
Tamaño de la empresa	12
Breve reseña histórica de la empresa	12
Organigrama de la empresa	14
Misión, Visión y Política	14
Productos y clientes	14
Premios y certificaciones	14
Relación de la empresa con la sociedad	15
PLANTEAMIENTO DEL PROBLEMA QUE FUE ABORDADO	16
Caracterización del área en que se participó	16
Antecedentes y definición del problema	16
Objetivos. General y específicos.	18
Justificación	18
Alcances y limitaciones	19
MARCO TEÓRICO	20
Sistemas de Control Industrial	20
Definiciones	23
Componentes de un sistema de control	23
Proceso productivo del cobre	25
Proceso de Concentradora Tintaya	27
DESARROLLO DEL PROYECTO	33
Sistema de control distribuido planta Tintaya	33
Elementos que conforman el DCS SYMPHONY	35
Sistema de control - área Chancado	35
Oportunidades de mejora	44
Migración de la plataforma del sistema de control distribuido del área	a de chancado45
Gestión del proyecto	47
ANÁLISIS Y RESULTADOS	69
Migración de señales	69
Migración de pantallas	74

Faceplates de Motores	75
Estaciones de trabajo y servidores	78
Conclusiones	81
Recomendaciones	82
REFERENCIAS	83
ANEXOS	85

ÍNDICE DE FIGURAS

Figura 1. Porcentaje de Participación en Producción de Cobre según empresa	12
Figura 2. Organigrama de Compañía Minera Antapaccay	14
Figura 3. Niveles jerárquicos sistema de control distribuido	21
Figura 4. Arquitectura sistema de control, supervisión y adquisición de datos (SCA	\DA)22
Figura 5. Instrumentos de Campo	23
Figura 6. Módulo de Entrada digital	24
Figura 7. Módulo de Entrada digital	24
Figura 8. Centro de Comando Foxboro	25
Figura 9. Diagrama de flujo del proceso de chancado planta Tintaya.	28
Figura 10. Diagrama de flujo del proceso de molienda planta Tintaya.	30
Figura 11. Diagrama de flujo del proceso de flotación planta Tintaya.	32
Figura 12. Arquitectura de control planta Tintaya	34
Figura 13. Gabinete de comunicación chancado primario	36
Figura 14. Gabinete de control chancado primario	37
Figura 15. Controlador BRC410	37
Figura 16. Módulos Serie System800xA	38
Figura 17. PLC marca Allen Bradley – Planta de agua.	39
Figura 18. Conexión PLC marca Allen Bradley – Planta de agua	40
Figura 19. Conexión PLC marca Allen Bradley – Chancadora Raptor	44
Figura 20. Nueva Arquitectura de control planta Tintaya	46
Figura 21. EDT proyecto	47
Figura 22. Diagrama GANTT del proyecto	48
Figura 23. Organigrama de proyecto	48
Figura 24. Field Controler Procesor FCP280	51
Figura 25. Estación de Operación H92	52
Figura 26. Servidor de Aplicación H90	53
Figura 27. Switch P0973JM	53
Figura 28. Switch P0973KJ	54
Figura 29. Arquitectura de control Foxboro - Área de Chancado	56
Figura 30. Proceso de configuración de lógica de control.	60
Figura 31. Proceso de configuración de pantallas para interface gráfica.	61
Figura 32. Diagrama Gantt de actividades Etapa 0	63
Figura 33. Cronograma de actividades Etapa 1	65
Figura 34 Cronograma de actividades Etapa 2	67
Figura 35. Diferencia de señales en Sistema de control del área Chancado.	70

Figura 36. Interfaz gráfica antes de la migración	75
Figura 37. Interfaz gráfica después de la migración	75
Figura 38. Faceplate de control de motores antes de la migración	77
Figura 39. Faceplates de control de motores después de la migración	77
Figura 40. Ciclo de Vida equipos Foxboro instalados	80

ÍNDICE DE TABLAS

၁၀
39
42
43
51
52
53
54
55
57
58
58
58
60
69
70
71
71
72
73
76
76
78
79

INTRODUCCIÓN

A medida que pasan los años los sistemas de control industrial avanzan de la mano con la tecnología, esto permite que los usuarios puedan contar con mayores beneficios, como velocidades de procesamiento de datos, integración total de la planta, redundancia de procesamiento, entre otros.

Contar con un sistema de control industrial obsoleto está bastante relacionado a contar con equipos electrónicos obsoletos en nuestra vida diaria, probablemente seguirán funcionando después de la vida útil determinada por el proveedor, sin embargo, cuando fallan ya no se cuenta con el soporte técnico, ni con los repuestos para ponerlos nuevamente en funcionamiento, esto llevado a una planta industrial significa tiempos muertos y por ende perdidas económicas.

El presente trabajo busca explicar cómo se optimizó el proceso de planta Tintaya por medio de la migración de su sistema de control obsoleto a un sistema de control moderno, cuáles fueron los beneficios de esta migración y las razones por las que se optó por la migración.