

FACULTAD DE INGENIERÍA

Carrera de Ingeniería Civil

DISEÑO DE UN EDIFICIO MULTIFAMILIAR DE 4 PISOS Y UN SEMISÓTANO EN EL DISTRITO DE VILLA EL SALVADOR

Trabajo de Investigación para optar el Grado Académico de Bachiller en Ingeniería Civil

VETO CARBONELLI ZANABRIA LENIN PORTOCARRERO RODRÍGUEZ JHOSSEP ROSSOWILL REYES YENQUE

Lima – Perú 2019

Índice

1.	Car	ta de	e presentación	8
2.	Des	crip	ción del problema del proyecto	9
	2.1.	Des	scripción de la realidad problemática.	9
	2.2.	Del	limitación de la investigación.	9
	2.3.	For	mulación del problema de la investigación.	9
	2.4.	Obj	etivos de la investigación.	10
	2.4.	1.	Objetivo general.	10
	2.4.	2.	Objetivos específicos.	10
	2.5.	Jus	tificación e importancia.	11
3.	Plai	n de	metodología de trabajo	11
4.	Esp	ecifi	caciones técnicas	13
5.	Res	ume	n de cumplimiento con las restricciones y limitaciones del proyecto	20
6.	Res	ume	n de cumplimiento con estándares de diseños nacionales	22
7.	Jue	go d	e planos constructivos.	25
,	7.1.	Pla	no de ubicación y localización	25
,	7.2.	Pla	no de arquitectura	25
,	7.3.	Pla	nos de diseño estructural y cimentaciones	25
8.	Me	mori	a de cálculos	26
,	8.1.	Me	moria de estudios básicos	26
	8.1.	1.	Datos de la zona de estudio	26
	8.1.	2.	Geología y sismicidad	27
	8.1.	3.	Características geotécnicas	28
,	8.2.	Me	moria de cálculo: Análisis sísmico	37
,	8.3.	Me	moria de cálculo: Diseño estructural de elementos de concreto armado	43
	8.3.	1	Análisis y diseño de la placa más cargada PL-02	43
	8.3.	2	Análisis y diseño de vigas	48
	8.3.	3	Análisis y diseño de columnas	50
	8.3.	4	Análisis y diseño de losa aligerada y maciza	52
	8.3.	5.	Memoria de cálculo de zapata aislada, C-01	59
	8.4.	Me	moria de cálculo: Diseño de albañilería y elementos de confinamiento	62
9.	Me	mori	a de calidades y especificaciones de los materiales	76
10	. C	ronc	ograma de ejecución	81

10.1.	Diagrama de Gantt	81
10.2.	Diagrama de Ruta Crítica	82
10.3.	Diagrama WBS	83
10.4.	Flujo de Caja	83
11. Pre	supuesto y análisis de costos	84
11.1.	Resumen de costos	85
11.2.	Hoja de presupuesto	86
11.3.	Análisis de precios unitarios	88
11.4.	Listado de insumos	88
11.5.	Fórmula polinómica	90
12. Plan	n de control de calidad y seguridad en obra	91
12.1.	Control de calidad en obra	91
12.1.1	. Control de calidad en la recepción en obra de materiales, equipos y	
sisten	nas. 91	
12.1.2	Control de calidad en la ejecución de la obra	91
12.1.3	Control de calidad de obra terminada	91
12.2.	Seguridad en obra	93
12.2.1	. Matriz de Identificación de Peligros, Evaluación de Riesgos y	
Deter	minación de Controles – IPERC.	93
12.2.2	. Matriz Estándar de Equipos de Protección Individual	93
12.2.3	. Análisis de Trabajo Seguro - ATS	93
13. Plan	n de gestión ambiental	94
14. Cor	nclusiones de la solución propuesta	95
15. Rec	comendaciones de la solución propuesta	96
Referencia	s bibliográficas	98
Anexo 1. I	Parámetros Urbanísticos y Edificatorios	100
Anexo 2: I	Plano de ubicación y localización	102
Anexo 3: I	Plano de arquitectura	104
Anexo 4: I	Planos de diseño estructural y cimentaciones	111
Anexo 5: I	Perfil Estratigráfico	117
Anexo 6: I	Matrices de Seguridad en Obra	119
Anexo 7: 1	Matriz de Programa de Manejo Ambiental	124
Anexo 8: 1	Metrados	126
Anexo 9: A	Análisis de Precios Unitarios	136

Anexo 10: Verificación de resistencia a corte de albañilería y elementos de confinamie	nto
	164
Anexo 11: Actas de Reuniones y Documentación	167
Índice de tablas	
indice de tablas	
Tabla 3-1. Cronograma de Metodología de Trabajo	12
Tabla 5-1. Cuadro comparativo de parámetros urbanísticos.	22
Tabla 6-1. Pesos específicos de los principales materiales y/o elementos.	23
Tabla 8-1. Información general de estudios geotécnicos	29
Tabla 8-2: Resumen de parámetros físicos mecánicos	32
Tabla 8-3: Valores de N para la profundidad de cimentación.	33
Tabla 8-4: Valores de corrección del N70	34
Tabla 8-5: Consideraciones para el cálculo de capacidad por corte	35
Tabla 8-6: Cálculo de capacidad de corte por el método de Vesic	36
Tabla 8-7: Cálculo de capacidad de corte por el método de Meyerhof	36
Tabla 8-8: Resumen de las condiciones de cimentación	36
Tabla 8-9. Cargas consideradas en el modelo	40
Tabla 8-10. Comparación de carga viva calculada manualmente con el computacional	40
Tabla 8-11. Comparación de cortantes basales para cumplir con la E.030	41
Tabla 8-12: Periodos y modos de vibración	41
Tabla 8-13: Distorsiones máximas en el eje Y-Y	42
Tabla 8-14: Distorsiones máximas en el eje Y-Y	42
Tabla 8-15. Casos de carga axial, momentos y cortantes	43
Tabla 8-16: Combinaciones de cargas	43
Tabla 8-17: Cálculo de número de varillas longitudinales requeridas en las vigas.	48
Tabla 8-18: Espaciamientos de estribos en vigas.	50
Tabla 8-19. Fuerzas actuantes de las columnas.	50
Tabla 8-20. Fuerzas cortantes actuantes y resistentes para las columnas	52
Tabla 8-21. Cálculo de la carga distribuida última de la losa	53
Tabla 8-22: Valores de la envolvente de momento de diseño	55
Tabla 8-23: Calculo de la distancia "a" de la vigueta de la losa aligerada.	55
Tabla 8-24: Detalle de la cantidad de acero para la vigueta de la losa aligerada.	56

Tabla 8-25: Acero mínimo para losa aligerada de 20 cm de espesor.	56
Tabla 8-26: Valores de la envolvente de la cortante de diseño	57
Tabla 8-27. Dato de diseño de Zapata	59
Tabla 8-28. Verificación de la capacidad admisible del suelo	59
Tabla 8-29. Cálculo de esfuerzo último de diseño	59
Tabla 8-30. Peralte estimado, d	60
Tabla 8-31. Verificación por cortante, flexión y cálculo de acero para la zapata	60
Tabla 8-32. Densidad de Muros Reforzados	63
Tabla 8-33: Cargas de Gravedad Acumuladas del modelo en ETABS (ton): Pg = PD +	
0.25PL	65
Tabla 8-34. Fuerzas de Inercia ante el Sismo Moderado "Fi"	67
Tabla 8-35: Fuerzas Internas Ve (ton) y Me (ton-m) ante Sismo Moderado X-X	67
Tabla 8-36. Piso 1 Sismo en X-X	69
Tabla 8-37: Piso 2 Sismo en X-X	69
Tabla 8-38: Piso 3 Sismo en X-X	69
Tabla 8-39: Piso 4 Sismo en X-X	70
Tabla 8-40. Fuerzas internas en columnas de confinamiento	70
Tabla 8-41: Fórmulas y Secuencia del Diseño de Columnas y Vigas de Confinamiento	X-X
	74
Tabla 9-1: Límites granulométricos	77
Tabla 9-2. Trabajabilidad del concreto en estado fresco	78
Tabla 9-3. Resistencia f'c de elementos de concreto armado exigidos	78
Tabla 9-4. Desencofrado de elementos	79
Tabla 10-1. Flujo de caja de los egresos del proyecto.	83
Tabla 10-2. Flujo de caja de los ingresos del proyecto.	83
Tabla 10-3. Utilidades del proyecto.	84
Índice de figuras	
Figura 3-1. Diagrama de flujo de la Metodología de Trabajo	12
Figura 5-1. Postes situados en el terreno del proyecto	20
Figura 5-2. Cercos perimétricos colindantes	21
Figura 5-3. Caja de luz en cerco perimétrico	21
Figura 8-1. Mapa geológico.	27

Figura 8-2. Croquis de estudios geotécnicos	29
Figura 8-3. Modelo de la edificación en ETABS	37
Figura 8-4. Espectro de pseudo aceleración eje XX	39
Figura 8-5. Espectro de pseudo aceleración eje YY	39
Figura 8-6. Vista del modo 1, T= 0.276 segundos, en el eje Y-Y	41
Figura 8-7. Vista del modo 3, T= 0.124 segundos, en el eje X-X	42
Figura 8-8. Distribución del acero en la placa	45
Figura 8-9: Diagrama de interacción nominal, PL-01	45
Figura 8-10: Desplazamiento total en la placa	47
Figura 8-11. Diagrama de interacción de la columna C-01	51
Figura 8-12. Diagrama de interacción de la columna C-05	51
Figura 8-13. Diagrama de interacción de la columna C-07	52
Figura 8-14. Carga ultima sobre la vigueta de la losa, kgf	53
Figura 8-15: Diagrama de momento flector debido a la carga ultima, tonf-m.	53
Figura 8-16: Alternancia de carga viva sin amplificar, kgf.	54
Figura 8-17: Diagrama de momento flector debido a la alternancia de cargas, tonf-m	
(cargas amplificadas)	54
Figura 8-18: Alternancia de carga viva sin amplificar, kgf.	54
Figura 8-19: Diagrama de momento flector debido a la alternancia de cargas, tonf-m	
(cargas amplificadas)	54
Figura 8-20: Diagrama de fuerza cortante debido a la carga ultima, tonf.	56
Figura 8-21: Diagrama de fuerza cortante debido a la alternancia de cargas (+), tonf (e	cargas
amplificadas)	57
Figura 8-22: Diagrama de fuerza cortante debido a la alternancia de cargas (-), tonf (c	argas
amplificadas)	57
Figura 8-23. Muro de 15 cm más cargado	64
Figura 8-24. Muro de 25 cm más cargado	64
Figura 13-1. Plan de gestión ambiental	94

Resumen

El proyecto consiste en la elaboración de un expediente técnico de una edificación de 4 pisos y un semisótano ubicado en el distrito de Villa El Salvador, específicamente en la Avenida Magisterio, Manzana Q y Lote 22, con énfasis en el área de estructura, a partir de un plano de arquitectura provisto por el cliente, quien pide que se mantenga la distribución de ambientes propuesta y que se maximicen las áreas de éstos. Además, el cliente solicita que se haga un análisis de costos y presupuestos incluyendo las áreas de Arquitectura, Instalaciones Eléctricas, Sanitarias y Especiales.

La estructura definitiva con un área construida de 1308 m² está compuesta por vigas, columnas, muros de corte, muros de albañilería, losas macizas y aligeradas, zapatas aisladas y cimientos corridos que fueron diseñados y justificados mediante memorias de cálculo donde se muestran el cumplimiento de la normativa nacional, principalmente con las del R.N.E E020, E030, E050, E060 y E.070; así como la normativa local, cumpliéndose con los parámetros urbanísticos y edificatorios impuestos por la municipalidad de Villa El Salvador.

Para asegurar el cumplimiento de los valores asumidos para los cálculos como en la etapa de ejecución, se presentan las especificaciones técnicas dando importancia al área de Estructuras, por ser el objetivo intrínseco del proyecto.

El presupuesto final calculado considerando las áreas requeridas es de S/. 2, 041, 515.70, tomándose en consideración que los gastos generales y utilidad fueron de 20% y 10%, respectivamente. Por otro lado, la duración del proyecto es de 158 días calendarios con fecha de inicio el 01 de agosto del 2019 y fecha de finalización el 06 de enero del 2020.

Como parte del proyecto se incluyeron los planes de Control de Calidad, Seguridad en Obra y Gestión Ambiental; para el plan de Control de Calidad se establecieron los controles en la recepción en obra de materiales, equipos y sistemas, control durante la ejecución de la obra y control de obra terminada; para el plan de Seguridad en Obra, se identificaron mediante una matriz IPERC las actividades con más riesgo, su propuesta de mitigación, entre otras; mientras que para el plan de Gestión Ambiental se determinaron las actividades en la ejecución de obra con más impacto ambiental, proponiéndose un plan de mitigación.

1. Carta de presentación

CARTA DE PRESENTACIÓN

Nombre del proyecto:

Diseño de un edificio multifamiliar de 4 pisos y un semisótano en el distrito de Villa El Salvador.

Cliente:

Veto Carbonelli Zanabria.

Caso de negocio:

El proyecto tiene por finalidad la construcción de un edificio multifamiliar para el alquiler de departamentos ubicado en la Av. Magisterio Mz. Q, Lt. 22 en el distrito de Villa El Salvador.

Recursos pre asignados:

- Ubicación del proyecto.
- Parámetros Urbanísticos y Edificatorios.
- Planos de arquitectura.

Cronograma del proyecto:

Fecha de Inicio: 01 de agosto de 2019.

Fecha de fin: 06 de enero de 2020.

Duración: 158 días calendarios.

Presupuesto del proyecto:

Costo directo: S/. 1, 330, 844.65

Gastos generales: S/. 266, 168.93

Utilidad: S/. 133, 084.47

Subtotal: S/. 1, 730, 098.05

IGV: S/. 311, 417.65

Total Presupuesto: S/. 2, 041, 515.70

2. Descripción del problema del proyecto

2.1. Descripción de la realidad problemática.

Gran parte de las construcciones en el Perú son de albañilería confinada. En Lima se aprecia un gran crecimiento de este tipo de edificaciones, principalmente en los distritos de clase socioeconómica media, donde se optan por edificaciones de entre 3 a 5 pisos. Sin embargo, surge el problema de que este tipo de construcciones son realizadas sin una dirección técnica y más aún, sin el desarrollo de un estudio que permita cumplir con los estándares de calidad tanto en el diseño, materiales y procesos constructivos. (Bickel, 2018)

Estas edificaciones construidas informalmente son vulnerables a efectos de la naturaleza, especialmente a eventos sísmicos, lo que genera preocupación en la población, que tiene proyectada construir una edificación de albañilería confinada siguiendo la tendencia actual, y conlleva a esta a buscar una dirección técnica que evalúe la propuesta y realice los análisis correspondientes y las modificaciones necesarias para obtener finalmente un expediente técnico correctamente elaborado donde se justifique principalmente la seguridad estructural de la edificación.

2.2. Delimitación de la investigación.

La investigación está referida al área geográfica del distrito de Villa El Salvador, específicamente al área de estudio que se detalla en el plano de ubicación.

El tema se basa en el desarrollo del expediente técnico de un edifico multifamiliar; se desarrolla el estudio completo con ciertas consideraciones impuestas por el cliente; primero, el cliente solicita que los parámetros geotécnicos sean obtenidos a partir de estudios referenciales realizados en la zona, quedando en compromiso la verificación de dichos parámetros con la realización de un Estudio de Mecánica de Suelos para la ejecución del proyecto; segundo, para el análisis de costos y presupuestos se desarrolla a detalle las partidas generales de Estructuras y Arquitectura, mientras que para las otras partidas (Instalaciones Eléctricas, Sanitarias y Especiales) se realizan estimaciones referenciales. Adicionalmente solicita que los gastos generales sean considerados como el 20% del costo directo.

2.3. Formulación del problema de la investigación.

El cliente requiere el diseño de una edificación multifamiliar de 4 pisos y un semisótano

en el distrito de Villa El Salvador siguiendo el Reglamento Nacional de Edificaciones. Para esto, el cliente provee el plano de arquitectura sugiriendo que la edificación tenga un sistema de albañilería confinada. Previamente, el cliente pide de que se evalué la viabilidad estructural del plano de arquitectura propuesta, y en caso esta no cumpla, solicita que se hagan las modificaciones necesarias para su cumplimiento.

Debido a la poca densidad de muros de albañilería propuesta por el cliente (ver anexo 10), con el fin de tener ambientes con áreas considerables, la edificación no cumple con los parámetros antisísmicos por lo que se propone un sistema combinado de albañilería confinada y concreto armado para seguir cumpliendo con lo exigido tanto por el cliente como por la normativa.

Por otra parte, para la etapa de ejecución el cliente tiene la incertidumbre en cuanto al costo y duración del proyecto, por lo que solicita el estimado de este, y además un plan de control de calidad, seguridad en obra y gestión ambiental.

2.4. Objetivos de la investigación.

2.4.1. Objetivo general.

Diseñar un edifico multifamiliar de 4 pisos y un semisótano propuesto por el cliente en el distrito de Villa El Salvador cumpliendo con los parámetros de diseño exigidos por el Reglamento Nacional de Edificaciones.

2.4.2. Objetivos específicos.

- Evaluar la viabilidad estructural de la edificación propuesta.
- Reestructurar la edificación cumpliendo con los parámetros de diseño exigidos por el Reglamento Nacional de Edificaciones.
- Diseñar los elementos estructurales cumpliendo con los parámetros de diseño exigidos por el Reglamento Nacional de Edificaciones.
- Elaborar los planos de estructuras y de arquitectura definitiva.
- Desarrollar una propuesta económica involucrando un análisis de costos y presupuestos y el cronograma de ejecución de obra.
- Definir las especificaciones técnicas.
- Desarrollar un plan de control de calidad y seguridad en obra, así como un plan de gestión ambiental.

2.5. Justificación e importancia.

En este estudio el cliente requiere ambientes con áreas considerables y además propone un sistema de albañilería confinada. Para cumplir con lo solicitado, surge la necesidad de aplicar un conjunto de conocimientos técnicos para así evaluar la viabilidad de la propuesta inicial y la consecuente reestructuración de esta. Por otro lado, el estudio abarca el desarrollo de una propuesta económica tomando en cuenta un análisis de costos y presupuestos y el cronograma de ejecución de obra, permitiendo así que el cliente tenga un conocimiento más preciso de lo que involucra el proyecto y, complementario a ello, se desarrolla el plan de control de calidad, seguridad en obra y un plan de gestión ambiental.

3. Plan de metodología de trabajo

A continuación, se mostrará el Diagrama de Flujo propuesto para llegar a obtener el expediente técnico del proyecto. Para empezar, el cliente debe proponer la arquitectura de la edificación, éste se tomará en cuenta para la estructuración del edificio, posteriormente, se realizarán los análisis y diseños respectivos acorde a las restricciones y limitaciones del proyecto, así como a los estándares de diseño nacionales e internacionales. Si se cumplen dichas condiciones, se pasará a realizar los planos definitivos de Arquitectura, Estructuras y Ubicación, siendo estos útiles para realizar los metrados correspondientes y consecuentemente la elaboración del Cronograma de Ejecución y el Presupuesto y Análisis de Costos.

Para agilizar las actividades propuestas en la metodología, se establecieron plazos para la elaboración de dichas actividades, ver la Tabla 3-1.

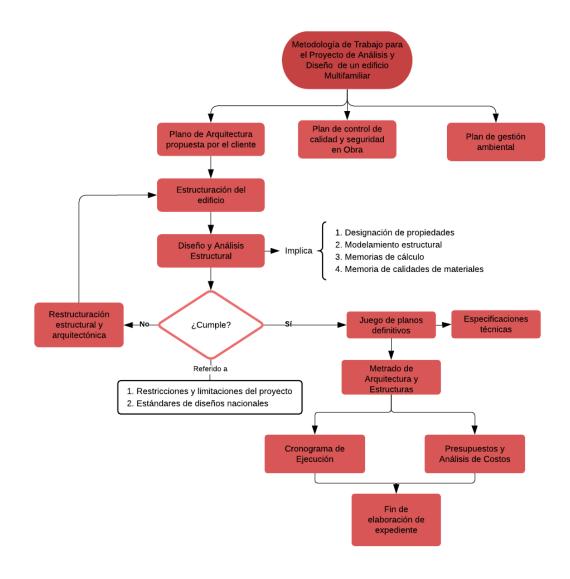


Figura 3-1. Diagrama de flujo de la Metodología de Trabajo Fuente: Elaboración propia

Tabla 3-1. Cronograma de Metodología de Trabajo

Tabla 5-1. Cronograma de Metodologia de Trabajo																
Inicio	Inicio	Fin	S1	S2	S 3	S4	S5	S6	S 7	S8	S9	S10	S11	S12	S13	S14
Estructuración del edificio	S1	S2														
Diseño y Análisis Estructural	S2	S														
Juegos de planos definitivos	S7	S10														
Especificaciones técnicas	S10	S11														
Metrados	S9	S12														
Cronograma de ejecución	S12	S15														
Presupuestos y Análisis de Costos	S12	S15														
Plan de Control de Calidad y Seguridad en Obra	S 9	S11														
Plan de Gestión Ambiental	S10	S11														
Fin	S1	S15						Ī								

Fuente: Elaboración propia

12

4. Especificaciones técnicas

Las especificaciones técnicas son aquellas indicaciones que tienen la finalidad de guiar al Contratista en las diferentes partidas que se tiene en el proyecto. A continuación, se mostrarán las especificaciones técnicas de aquellas partidas más incidentes e importantes en el proyecto dando énfasis al área de Estructuras.

01. Estructuras

01.01. Obras preliminares

01.01.01. Construcciones provisionales

01.01.01.01. Oficina (día)

Espacio destinado para labores administrativas y técnicas del Contratista y Supervisión durante la ejecución de la obra. Será un contenedor alquilado.

01.01.01.02. Almacén y Caseta de guardianía (día)

Con la finalidad de acopiar los materiales y equipos durante la ejecución de la obra y e instalar al personal de seguridad de obra. Se considerará un ambiente de 18 m² de un contenedor.

01.01.01.03. Comedor (día)

Su fin es de tener un ambiente para el consumo de los alimentos del personal en obra. Se considerará ambientes con cobertura de calamina ondulada de espesor de 0.23 mm, y muros estructurados con madera machihembrada tipo bolaina de 3/4"x4"x3.20 m, con puertas y ventanas incluidas, y una losa de concreto simple.

01.01.01.04. Servicios higiénicos (día)

Su fin es proveer un ambiente para que el personal de obra realice sus necesidades fisiológicas. Se considerará ambientes con cobertura de calamina ondulada de espesor de 0.23 mm, y muros estructurados con madera machihembrada tipo bolaina de 3/4"x4"x3.20 m, puertas y ventanas incluidas, y una losa de concreto simple, así como la implementación de duchas, lavatorios, urinarios, y retretes.

01.01.01.05. Cartel de obra (gbl)

Su objetivo es especificar el tipo de obra, el nombre, la duración, el horario de trabajo, etc. Tendrá una dimensión de 2.4x3.6 m con apoyos de madera de 4"x4"x5 m con bastidores horizontales de 2"x2".

01.01.01.06. Cerco temporal de obra (m)

Su fin es de cercar la zona de construcción. Se construirá con listones de madera de 2"x3" recubiertos con tablas corrientes de 1" de espesor. Se debe garantizar la estabilidad de este ante eventos de ráfagas y otros.

01.01.02. Instalaciones provisionales

01.01.02.01. Energía eléctrica, agua y desagüe provisional (GBL)

Corresponde al abastecimiento y consumo durante la ejecución de la obra. La Supervisión verificará que las instalaciones realizadas por el Contratista garanticen calidad y seguridad para el personal de obra.

01.01.03. Trabajos preliminares

01.01.03.01. Limpieza de terreno (m²)

Comprende la eliminación de material orgánico que se encuentran en el terreno. Se realizará con mano de obra y herramientas manuales.

01.01.03.02. Trazo y replanteo (m²)

Comprende el replanteo de los planos en el terreno y nivelado, fijando los ejes de referencia y las plantillas de nivelación. Se realizará antes de cualquier excavación definitiva.

01.02. Movimiento de tierras

01.02.01Excavación masiva (m³)

Corresponde a la excavación a realizar para el semisótano. El esquipo a utilizar para la excavación será una excavadora Caterpillar modelo 320 DL con ruedas neumáticas o similar que esté disponible en el mercado.

01.02.02. Excavaciones localizadas (m³)

Corresponde a la excavación de las zapatas, vigas de cimentación y otros. El trabajo se realizará manualmente con las cuadrillas correspondientes.

01.02.03. Nivelación y compactación de cimentación (m²)

Son los trabajos de nivelación y apisonado de las zonas defectuosas del terreno que están indicadas en el plano correspondiente. Se utilizará material de préstamo y se compactará alrededor de la parte superior de la cimentación hasta llegar al nivel requerido para recibir el piso. Se realizará en capas no mayor a 10 cm.

01.02.04. Relleno y compactado con material de préstamo (m³)

Se define como aquel que se forme colocando el material en capas sensiblemente

horizontales. Los rellenos compactados serán de capas de máximo 20 cm, con una humedad de acuerdo con el Proctor Estándar para su máxima compactación. Se empleará pistones de mano o neumático hasta obtener la compactación requerida.

01.02.05. Eliminación de material excedente (m³)

Se define como el material excavado no útil para el relleno. Para este proyecto todo material excavado deberá considerarse como material excedente el mismo que deberá ser eliminado con volquetes de 25 m³ de capacidad a un botadero autorizado.

01.03. Obras de concreto simple

01.03.01. Solado (m^2)

Con la finalidad de evitar el contacto previo del acero de refuerzo con el terreno natural. Será compuesto de concreto pobre de 0.10 m de espesor con una determinada dosificación de agua, cemento y hormigón que garantice un mínimo de f´c=100 kg/cm².

01.03.02. Cimiento corrido

Es la estructura que amarra a las zapatas aisladas, así como soporta las cargas actuantes sobre ellas debido a muros. El ancho será el indicado al plano, mientras que la resistencia del concreto utilizado deberá ser de 310 kg/cm². Adicionalmente, se le añadirán piedras grandes hasta un 30%.

01.03.03. Falso piso (m^2)

Es la estructura inferior a los pisos acabados. Estará compuesto de concreto simple de 10 cm de espesor y es construida previo al piso. Se empleará una mezcla de 1:8 y se curará durante 4 días.

01.03.04. Patio, veredas y rampa (m²)

Conforman el proyecto en general. Se empleará concreto de resistencia a compresión de 175 kg/cm² en paños no mayores de 20 m² por colada.

01.04. Obras de concreto armado

01.04.01. Zapatas

Cimentación superficial que transmite al terreno las cargas de la estructura y la ancla. Las columnas que llevarán zapatas están especificadas en el plano respectivo.

01.04.01.01. Concreto en zapatas (m³)

Se empleará concreto premezclado con resistencia a los 28 días igual o mayor a 310 kg/cm². Se deberá humedecer la zanja antes del vaciado y se prescindirá de

encofrado. El revenimiento mínimo que tendrá es de 4", para ello se realizará el ensayo de Asentamiento.

01.04.01.02. Acero en zapatas (kg)

El refuerzo de las zapatas será de acero corrugado grado 60 (f'y=4200 kg/cm²). La colocación del refuerzo se detalla en los planos con sus dimensiones y diámetros. Serán colocados en forma de malla evitando en todo momento el contacto entre éste y el terreno para evitar la corrosión de este, para ello se utilizarán dados de concreto cuya altura sea la misma a su recubrimiento.

01.04.02. Vigas de conexión

Elemento estructural que sirve para unir las zapatas-columnas aisladas generando una estabilidad estructural frente a asentamientos debajo del nivel de desplante.

01.04.02.01. Concreto de vigas de cimentación (m³)

Se empleará concreto premezclado con resistencia a los 28 días de 310 kg/cm². Amarrarán a la columna y a la zapata y su curado será similar a la de una viga aérea. Además, se verificará la trabajabilidad del concreto, con el Ensayo de Asentamiento, será como mínimo 3".

01.04.02.02. Acero de vigas de cimentación (kg)

El acero de refuerzo será de corrugado grado 60 (f'y=4200 kg/cm²). Los ganchos serán amarrados al refuerzo del acero y la zapata. Llevarán estribos, acero longitudinal y bastones, procurando en todo momento evitar el contacto de éstos con el terreno. Además, la distribución de estos elementos será de acuerdo con los planos correspondientes.

01.04.02.03. Encofrado y desencofrado en placas (m²)

Se podrá realizar el desencofrado pasado 1 día. Antes del vaciado, verificar que el encofrado este totalmente arriostrado y apuntalado para resistir las presiones generadas por el concreto.

01.04.03. Placas y columnas

Elemento estructural que transmite las cargas de la losa a la cimentación además de resistir las fuerzas laterales provocadas por sismos.

01.04.03.01. Concreto en placas y columnas (m³)

Se empleará concreto premezclado con resistencia a los 28 días igual o mayor a 210 kg/cm². Se deberá humedecer la zanja antes del vaciado y se prescindirá de encofrado cuando el suelo del terreno lo permita. El revenimiento mínimo que

tendrá es de 5", para ello se realizará el Ensayo de Asentamiento.

01.04.03.02. Encofrado y desencofrado en placas y columnas (m²)

Se podrá realizar el desencofrado pasado 1 día. Antes del vaciado verificar que el encofrado este totalmente arriostrado y apuntalado para resistir las presiones generadas por el concreto.

01.04.03.03. Acero en placas y columnas (kg)

Acero corrugado logrado de acuerdo con la norma ASTM A615 grado 60 (f'y=4200 kg/cm²), con resistencia de fractura mínima de 5900 kg/cm², elongación de 20 cm.

01.04.04. Columnetas

Son elementos de arriostre de los muros de albañilería. Estos elementos deben ir después de haberse levantado los muros de albañilería.

01.04.04.01. Concreto de columnas de confinamiento (m³)

Se empleará concreto con una dosificación de tal forma que tenga un f'c= 175 kg/cm² como mínimo. Se verificará que el asentamiento del concreto antes de vertido sea de 4".

01.04.04.02. Encofrado de columnas de confinamiento (m²)

El encofrado será con tablones correctamente apuntalados y arriostrados. Estos se desencofrarán pasado los 3 días.

01.04.04.03. Acero de columnas de confinamiento (kg)

Acero corrugado logrado de acuerdo con la norma ASTM A615 grado 60 (f'y=4200 kg/cm²), con resistencia de fractura mínima de 5900 kg/cm², elongación de 20 cm. Las longitudes, distribuciones y diámetros estarán especificados en los planos.

01.04.05. Vigas

Elementos horizontales que transmiten las cargas de la losa hacia las columnas.

01.04.05.01. Concreto de vigas (m³)

Se empleará concreto premezclado de f'c=210 kg/cm². Se hará el curado vertiendo agua de forma prudente hasta los 14 días. Antes de su vaciado, se verificará que el encofrado este húmedo. El asentamiento que deberá tener haciéndose el Ensayo de Cono de Abrams será como mínimo de 3" con el fin de evitar cangrejeras y uniformizar la mezcla del elemento.

01.04.05.02. Encofrado y desencofrado de vigas (m²)

El desencofrado se realizará pasado 21 días después de su vaciado.

01.04.05.03. Acero de vigas (kg)

Acero corrugado logrado de acuerdo con la norma ASTM A615 grado 60 (f'y=4200 kg/cm²), con resistencia de fractura mínima de 5900 kg/cm², elongación de 20 cm.

01.04.06. Losa aligerada

Estructuras que sirven como coberturas y como pisos de varios niveles. Está constituido de concreto armado y ladrillos pandereta con el objetivo de aligerar la losa.

01.04.06.01. Concreto de losa aligerada (m³)

Se empleará concreto premezclado de f'c=210 kg/cm². El asentamiento del concreto antes de ser vertido debe estar en el rango de 4 ½ a 5 pulgas para evitar problemas con el bombeo. Se le rociará un curador químico finalizado el acabado de la losa. Luego se curará permanentemente con trapos húmedos.

01.04.06.02. Encofrado y desencofrado de losa aligerada (m²)

Comprende la instalación en la cara inferior de la losa un encofrado tradicional con listones de 20 cm. Se deberá asegurar que las aristas de contacto entre tablones no deben presentar una separación mayor a 1 mm para evitar que escurra la lechada. El desencofrado se hará pasado 14 días.

01.04.06.03. Acero de losa aligerada (kg)

Acero corrugado logrado de acuerdo con la norma ASTM A615 grado 60 (f'y=4200 kg/cm²), con resistencia de fractura mínima de 5900 kg/cm², elongación de 20 cm. Las longitudes, distribuciones y diámetros estarán especificados en los planos.

01.04.06.04. Ladrillos de losa aligerada (und)

Serán ladrillos huecos de 15x30x30 cm de arcilla cocida. Irán distribuidos a lo largo del encofrado a una distancia entre ladrillos de 10 cm para el ancho de las viguetas.

01.04.07. Escaleras

01.04.07.01. Concreto de escaleras (M3)

Además, se verificará la trabajabilidad del concreto con el Ensayo de Asentamiento que será como mínimo 3".

01.04.07.02. Encofrado y desencofrado de escaleras (m²)

El desencofrado se realizará pasado 7 días después de su vaciado.

01.04.07.03. Acero de escaleras (kg)

Acero corrugado logrado de acuerdo con la norma ASTM A615 grado 60.

02. Arquitectura

02.01. Muros portantes y tabiquería

Los muros portantes son estructuras que cumplen con la función de transmitir las cargas de la losa y vigas a la cimentación, mientras que la tabiquería tiene la función solo de separar los ambientes.

02.01.01. Muros portantes en cabeza (m²)

Serán de ladrillos de 18 huecos de arcilla cocida con un porcentaje de vacíos máximo de 30%. Su resistencia a compresión de la unidad será de 50 kg/cm² y la resistencia de una pila conformada por las unidades será de 45 kg/cm². Se apilarán máximo 1.2 m de altura por jornada de trabajo. La dosificación del mortero de apilamiento será 1:4 cemento y arena respectivamente con un máximo de 1.5 cm de espesor.

02.01.02. Muros portantes en soga (m²)

Será ladrillos de 18 huecos de arcilla cocida con un porcentaje de vacíos máximo de 30%. Su resistencia a compresión de la unidad será de 50 kg/cm² y la resistencia de una pila conformada por las unidades será de 45 kg/cm². Se apilarán máximo 1.2 m de altura por jornada de trabajo. Además, serán distribuidos en soga. La dosificación del mortero el apilamiento será 1:5 cemento y arena respectivamente con un máximo de 1.5 cm de espesor.

02.01.03. Ladrillos de tabiquería (und)

Estará compuesto de ladrillos de arcilla cocida conocidos como pandereta de dimensiones de 9X13X23 cm. Irán distribuidos en canto y el espesor de las juntas será máximo de 1.5 cm compuesto de 1:5 cemento y arena, respectivamente.

02.02. Revogues y revestimientos

Comprende los trabajos realizables en muros, vigas, columnas, placas, etc., con proporciones de mezcla definidas con el objetivo de presentar una superficie de protección e impermeabilización y a la misma vez dar un mejor aspecto.

02.02.01. Tarrajeo interior (m^2)

Corresponde al tarrajeo de muros, columnas, vigas y otros elementos con superficie expuesta exteriormente. Antes de la colocación de mezcla de proporción de 1:4 cemento: arena, se deberá limpiar y humedecer la superficie de trabajo. El espesor máximo de tarrajeo deberá ser de 1.5 cm.

02.02.02. Tarrajeo exterior (m²)

Corresponde al tarrajeo de muros, columnas, vigas y otros elementos con superficie

expuesta interiormente. Antes de la colocación de mezcla de proporción de 1:4 cemento: arena, se deberá limpiar y humedecer la superficie de trabajo. El espesor máximo de tarrajeo deberá ser de 1.5 cm.

02.03. Cielos rasos

02.03.01. Tarrajeo en cielorrasos (m²)

Corresponde al tarrajeo de cielorrasos. Antes de la colocación de mezcla de proporción de 1:4 cemento: arena, se deberá limpiar y humedecer la superficie de trabajo. El espesor máximo de tarrajeo deberá ser de 1.5 cm.

5. Resumen de cumplimiento con las restricciones y limitaciones del proyecto Condiciones de entorno

Ubicación: Se encuentra alejada a la zona céntrica del distrito de Villa El Salvador, por lo que, para la adquisición de materiales de construcción, se debe realizar con una buena programación logística para evitar pérdidas.

Postes de luz: Existen 2 postes de luz que deben ser reubicados previa coordinación con la compañía Luz del Sur S.A. Estos postes impiden el ingreso normal por el frente del terreno para actividades que requieran el ingreso de maquinaria pesada.

Figura 5-1. Postes situados en el terreno del proyecto

Muros colindantes: Los cercos perimétricos del terreno se verán afectados al momento de la excavación masiva y otras actividades, por lo que se demolerán previa autorización de los propietarios. Culminada la obra, se debe reponer el cerco

perimétrico para evitar molestias.

Figura 5-2. Cercos perimétricos colindantes

Caja de luz: En el frontis del terreno hay una caja de luz, esta debe ser trasladada a otra posición con previa coordinación con la compañía de luz mencionada anteriormente. De esta forma se permitirá el suministro continuo de energía eléctrica que será útil para el proyecto en sus diferentes actividades.

Figura 5-3. Caja de luz en cerco perimétrico

Parámetros urbanísticos

En este proyecto de edificación existen parámetros urbanísticos los cuales pueden conllevar a restricciones y limitaciones. Es así como estos parámetros se deben tener en consideración desde la conceptualización del proyecto.

De acuerdo con los parámetros urbanísticos y edificatorios del distrito de Villa El Salvador

(Ver Anexo 1) y la ubicación específica del proyecto y sus características, las limitaciones son las siguientes:

Tabla 5-1. Cuadro comparativo de parámetros urbanísticos.

Parámetros	Municipalidad de Villa El Salvador	Proyecto
Zona	RDM	RDM
Uso permitido	Multifamiliar	Multifamiliar
Lote mínimo (m²)	150	380
Frente mínimo (m)	8	12
Altura de edificación máxima (pisos)	4	4
Área libre Mínima	40%	42%
Estacionamientos mínimos	8	10

Fuente: Parámetros urbanísticos y edificatorios de la zona de estudio. Elaboración propia

El proyecto cumple con todas las limitaciones impuestas por la municipalidad de Villa El Salvador, por lo que este estaría aprobado para construirse sin inconvenientes.

6. Resumen de cumplimiento con estándares de diseños nacionales

En el proyecto de edificación ubicado en el distrito de Villa El Salvador se tuvo en consideración las normas nacionales que involucran un buen diseño de la estructura para que cumpla su principal función de acoger a personas y mantenerlas seguras frente a diferentes eventos externos. Las normas mencionadas y descritas a continuación son la base del diseño y modelamiento del edificio.

Norma A.010 - Consideraciones generales de diseño

Esta norma permite establecer consideraciones de diseño de una edificación, dichas consideraciones aplican a nivel nacional.

Artículo 11. Define que el retiro municipal puede ser usado para estacionamientos vehiculares con techos ligeros o sin techar, en el caso del proyecto a desarrollar se ha optado por estacionamientos sin techar.

Artículo 17. Menciona que la separacion entre edificaciones se establece en el calculo estructural correspondiente, los cual se sustenta en la memoria de calculo de aanálisis sísmico.

Artículo 22. Los ambientes con techos horizontales, tendrán una altura mínima de piso terminado a cielo raso de 2.30 m. Para el proyecto que se esta desarrollando se tiene una altura de piso terminado a cielo raso de 2.50 m.

Artículo 24. Las vigas y dinteles, deberan estar a una altura mínima de 2.10 m sobre el

piso terminado. En el proyecto se tiene alturas mayores a 2.25 m.

Artículo 67. En este artículo se define todo lo concerniente a parametros para los estacionamiento, por ejemplo la pendiente máxima de acceso no debe ser mayor a 15 %. Los mencionados son algunos de los artículos más resaltantes, sin embargo así sucesivamente se han tenido en consideración todos los artículos para garantizar el cumplimiento de la normativa que rige.

Norma E.020 - Cargas

De acuerdo con esta norma, en el modelamiento de un edificio se deben tener en consideración los efectos de las cargas muertas y vivas que afectarán a la estructura durante su vida útil.

Para el presente proyecto, las cargas muertas son impuestas de acuerdo con el tipo de material usado el cual será calculado por el programa ETABS 2016 Ultimate 16.2.1 (Extended 3D Analysis of Building Systems) introduciendo las propiedades del material propuestos en la Tabla 6-1. Las cargas vivas de acuerdo con el capítulo 3, indica que serán determinadas dependiendo al uso de la estructura, por lo tanto, para el edificio dedicado al uso de viviendas, la norma sugiere colocar un metrado de cargas de 200 kgf/m² sobre el techo de la estructura.

La norma E.020, también sugiere utilizar los siguientes pesos específicos de materiales:

Tabla 6-1. Pesos específicos de los principales materiales y/o elementos.

Materiales	Peso	Unidades
Unidades de albañilería cocida sólidas	1800	Kg/m ³
Unidades de albañilería cocida huecas	1350	Kg/m ³
Concreto Armado	2400	Kg/m ³
Acero	7850	Kg/m ³
Losa aligerada de 20 cm de espesor	300	Kg/m ²

Fuente: Reglamento Nacional de Edificaciones - Norma E.020. Elaboración propia

Norma E.030 - Diseño sismo resistente

Las consideraciones usadas en el presente trabajo en acorde con la norma sismorresistente son:

- La ubicación del proyecto, que definirá el factor de zona "Z" (la cual corresponde a un porcentaje de la gravedad), así como el tipo de perfil del suelo (ayudará a conocer el factor de amplificación sísmica "C" y los periodos "T_P" y "T_L).
- Categoría, sistema estructural y regularidad de las edificaciones: el primero,

clasifica a las edificaciones de acuerdo con su uso asignándole un valor a cada clasificación denominado factor de Uso "U". El segundo, indica el tipo de sistema estructural que se empleará, entre ellos se tiene a las estructuras aporticadas, muros estructurales, sistema dual, edificaciones de muros de ductilidad limitada que corresponden a las estructuras de concreto. También están las estructuras de acero y las estructuras de albañilería entre otras. Los de interés para el proyecto son los sistemas estructurales de concreto en conjunto con albañilería. Por último, se tiene en cuenta la presencia de irregularidades en la estructura que castigaran al factor de reducción "R".

Por otro lado, la norma ayuda a analizar los resultados después del modelamiento de la estructura para conocer si la estructura cumple los requerimientos mínimos o máximos permisibles como: distorsión angular máxima, rango de periodo fundamental de la estructura y deriva máxima.

Norma E.050 - Suelos y cimentaciones

De acuerdo con el tipo de suelo donde se cimentará la edificación, se podrá calcular la profundidad de desplante de la cimentación, la resistencia del suelo (esfuerzo admisible) el cual involucra el factor de suelo mencionado en la norma E-030, así como en el diseño de la cimentación.

La norma también proporciona desplazamientos permisibles en la cimentación de la edificación para controlar los desplazamientos diferenciales excesivos que pueden provocar el colapso de la estructura.

Norma E.070 - Albañilería

La edificación propuesta en el proyecto involucra tener en consideración a la norma E.070, donde se mencionan las resistencias mínimas y estándares, como la resistencia característica de la albañilería (f'm y V'm) que se deben tener en cuenta en el modelamiento de la estructura, sus espesores, módulo de elasticidad "Em" y la longitud mínima de 1.20 m para ser considera como un muro de albañilería confinada que aporte resistencia a la estructura.

Norma E.060 - Concreto armado

Esta norma análoga a la norma E.070, aportarán con similares propiedades referente al concreto, como su módulo de elasticidad "Ec", resistencia a la compresión" f'c", detalles del refuerzo (longitud y esfuerzo de fluencia fy = 4200 kgf/cm²), entre otras propiedades. También proveen métodos y especificaciones mínimas para el diseño de los muros

estructurales, columnas, vigas zapatas y losas.

7. Juego de planos constructivos.

Todos los planos se presentan en tamaño A3.

7.1. Plano de ubicación y localización

Los planos de ubicación comprenden la ubicación del proyecto y además se detallan los parámetros urbanísticos. Se adjunta plano en Anexo 2.

7.2. Plano de arquitectura

Los planos de arquitectura comprenden, vistas en planta por nivel y elevaciones. Se adjunta plano en Anexo 3.

Cabe resaltar que los planos de arquitectura fueron facilitados por el docente asesor, de un proyecto de vivienda multifamiliar en el distrito de Lince, sin embargo, estos han sido modificados en su gran mayoría siendo este finalmente considerado como el plano de propuesta inicial del cliente. El plano de arquitectura fue realizado por el arquitecto Gastón Espejo Zavala.

7.3. Planos de diseño estructural y cimentaciones

En los planos de diseño estructural se presenta los detalles estructurales de cada uno de los elementos que lo componen, como es el caso de placas, columnas y vigas de amarre, columnetas y muros de albañilería. Asimismo, todos los detalles de la cimentación. Se adjunta plano en anexo 4.

8. Memoria de cálculos

8.1. Memoria de estudios básicos

8.1.1. Datos de la zona de estudio

Ubicación de la Zona en Estudio

Avenida: Av. Magisterio. Anterior Av. Separadora Agroindustrial.

Distrito: Villa El Salvador.

Provincia: Lima.

Departamento: Lima.

Ubicación Geográfica

En coordenadas UTM Sistema WGS-84:

Latitud: 8649432.00 m S

Longitud: 286881.00 m E

Altitud: 79 m.s.n.m.

Ubicación específica

El terreno en estudio se encuentra en la parte céntrica de una manzana, teniendo así solo un frente que encierra una extensión superficial de 382 m2 y se encuentra a 79 m.s.n.m.

Abarca los siguientes linderos y medidas perimétricas.

- Por el Noreste: Propiedad de terceros.

- Por el Noroeste: Propiedad de terceros.

- Por el Sureste: Av. Magisterio.

- Por Suroeste: Propiedad de terceros.

Climatología

Villa El Salvador presenta una temperatura media anual de 18° a 19° C, con presencia de cielo nuboso y escasa o nula precipitación. La precipitación media anual es de 25 mm. (Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente, 2002.)

8.1.2. Geología y sismicidad

Geología

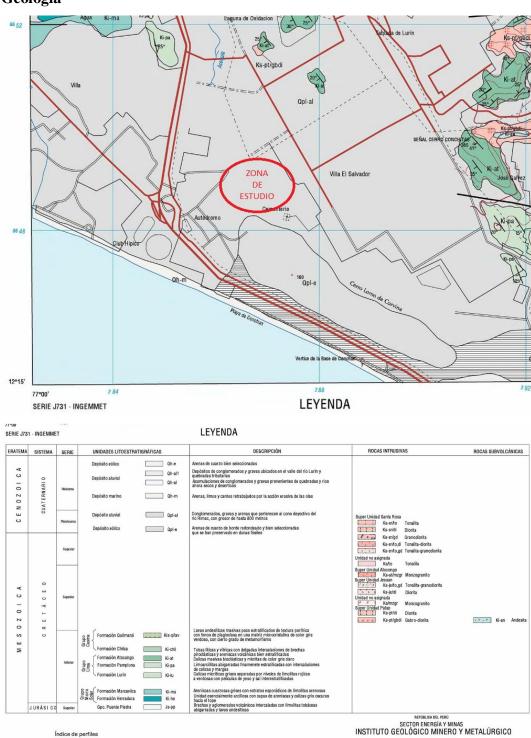


Figura 8-1. Mapa geológico.

Fuente: Carta 25 J4, correspondiente al Mapa Geológico del Cuadrángulo de Lurín (INGEMMET, Instituto Geológico, Minero y Metalúrgico, 2019). Escala 1:50 000.

De la carta 25 j4, se puede notar que la zona de estudio corresponde a un depósito aluvial (Qpl-al), de la serie Pleistocena, sistema Cuaternario y eratema Cenozoica. El cual se describe como una formación de conglomerados, gravas y arenas que pertenecen al cono deyectivo del río Rímac, con espesor de hasta 800 metros.

La zona de estudio se ve más influenciada por los depósitos eólicos recientes, debido a que se encuentra cerca a la formación del Lomo de Corvina, teniendo así una potencia considerable de arena en diferentes grados de compacidad, lo cual se detalla en el estudio de mecánica de suelos. (INGEMMET, Instituto Geológico, Minero y Morfológico, 1992)

Sismicidad

De acuerdo con el anexo II Zonificación sísmica de la norma E.030 – Diseño sismorresistente actualizada al 22 de octubre del 2018, el distrito de Villa El Salvador, provincia Lima, región Lima se encuentra ubicada en la zona 4 (Ministerio de Vivienda, Construcción y Saneamiento, 2018).

8.1.3. Características geotécnicas

Para determinar las características geotécnicas de la zona de estudio se toma en referencia a lo siguiente:

CONVENIO ESPECÍFICO DE COOPERACIÓN INTERINSTITUCIONAL ENTRE EL MINISTERIO DE VIVIENDA, CONSTRUCCIÓN Y SANEAMIENTO Y LA UNIVERSIDAD NACIONAL DE INGENIERÍA "ESTUDIO DE MICROZONIFICACIÓN SÍSMICA Y VULNERABILIDAD EN LA CIUDAD DE LIMA", tomándose específicamente la "MICROZONIFICACIÓN SÍSMICA DEL DISTRITO DE VILLA EL SALVADOR" (CISMID, 2011).

Para la realización del estudio de microzonificación sísmica del distrito de Villa El Salvador, desarrollaron el Apéndice B "Características Geotécnicas del Distrito de Villa El Salvador", para lo cual utilizaron información recopilada de estudios de mecánica de suelos para proyectos de ingeniería ejecutados en el distrito, así mismo complementaron el estudio con la excavación de calicatas y extracción de muestras de suelos para su respectivo análisis en el laboratorio, además de Ensayos de Penetración Estándar (SPT) y Ensayos de Cono Peck. Adicionalmente realizaron ensayos geofísicos por el método MASW, con el objetivo de determinar la potencia de las lentes y estratos de suelos que conforman el terreno de cimentación de este distrito. (CISMID, 2011)

Para la caracterización geotécnica se tomó como referencia a los estudios de mecánica de suelos realizados dentro de un radio de 900 m de la zona de estudio, ver Figura 8-2.

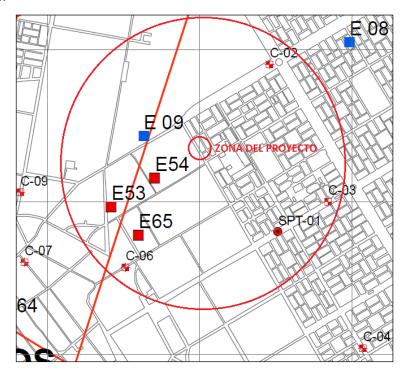


Figura 8-2. Croquis de estudios geotécnicos Fuente: Plano P-01, Ubicación de sondajes, Apéndice B "Características Geotécnicas del Distrito de Villa El Salvador".

A continuación, se presenta de manera general la información de los estudios geotécnicos.

Tabla 8-1. Información general de estudios geotécnicos

ESTUDIO	NOMBRE DEL L		PROF.	COORD	FECHA	
ESTUDIO	ESTUDIO	DIRECCIÓN	(m)	X	Y	FECHA
E 09	E.S.F.C. Proyecto: Telepuerto AT&T	Av. El Sol.Ref. Av. Los Forestales	3.00	286522.78	8649358.43	Sep. 01
E 53	E.S. Almacenes de Saga Falabella	Interseccion de la Av. Los Forestales y Ca. 2	9.50	286420.00	8648968.50	Jun. 03
E 54	E.S. de Tiendas por Departamento Ripley S.A.	Esquina de Av. El Sol y la Av. Separadora Agroindustrial	10.00	286705.88	8649157.92	Oct. 01

	NOMBRE DEL	Den Garási	PROF.	COORD			
ESTUDIO	ESTUDIO	DIRECCIÓN	(m)	X Y		FECHA	
E 65	E.M.S.F.C. Planta de Almacenamiento y Edific. de 1 a 2 Pisos para Oficinas	Espaldas de Alm. Ripley. Entre Ca. Prolong. Viña del Mar y Prolong. Arriba Perú	4.00	286600.90	8648783.07	Nov. 08	
C 02	Microzonificación Sísmica y Vulnerabilidad en la Ciudad de Lima	Intersección entre Av. El Sol - Av. Pastor Sevilla	2.00	287459.00	8649905.00	Jun. 10	
C 03	Microzonificación Sísmica y Vulnerabilidad en la Ciudad de Lima	Alt. Intersección Av. Juan Velasco Alvarado - Av. Pastor Sevilla	1.50	287843.89	8649013.22	Jun. 10	
C 06	Microzonificación Sísmica y Vulnerabilidad en la Ciudad de Lima	Prolongación Av. Arriba Perú - Ref. Espalda de Saga Falabella	2.00	286513.00	8648574.00	Jun. 10	
SPT-01	Microzonificación Sísmica y Vulnerabilidad en la Ciudad de Lima	Intersección Av. Juan Velasco Alvarado y Av. María Elena Moyano	4.60	287515.00	8648807.00	Jun. 10	

Fuente: Tabla B-1, B-2, B-3, Apéndice B "Características Geotécnicas del Distrito de Villa El Salvador". Elaboración propia

De los registros de sondaje de las calicatas C 02, C 03 y C 06, se tiene:

- Los primeros 0.50 m son rellenos compuestos por gravilla, restos de ladrillos y basura en general.

- De 0.50 m a 2.00 de profundidad (profundidad que alcanzó las calicatas) es arena mal gradada (SP), ligeramente húmeda (humedades menores a 4%).

Del registro de sondaje del SPT-01, se tiene:

- Los primeros 0.50 m son rellenos compuestos por gravilla, restos de ladrillos y basura en general.
- De 0.50 m a 4.00 de profundidad es arena mal gradada con limo (SP-SM), ligeramente húmeda (humedades menores a 4%) con porcentaje de finos menores al 10%.
- De 4.00 m a 4.50 m de profundidad (profundidad que alcanzó el sondaje) es arena mal gradada (SP) en estado muy firme, ligeramente húmeda (humedades menores a 4%).

Del registro de sondaje de la calicata del estudio E 09, este tiene un sondaje muy similar al de SPT-01.

Del registro de sondaje del SPT del estudio E 53, se tiene:

- De 0.00 m a 1.00 m es arena fina, ligeramente limosa (SP-SM).
- De 1.00 m a 6.00 m es arena fina, limosa (SM).
- De 6.00 m a 9.00 m es arena fina, ligeramente limosa (SP-SM) muy densa.
- Del registro de sondaje del SPT del estudio E 53, se tiene:

Del registro de sondaje del SPT del estudio E 54, se tiene:

- De 0.00 m a 9.00 m es arena fina mal gradada (SP) variando su compacidad de acorde a la profundidad de mediana densa a muy densa.

Del registro de sondaje del SPT del estudio E 65, se tiene:

- De .00 m a 0.50 m es rellenos compuestos por gravilla, restos de ladrillos y basura en general.
- De 0.50 m a 4.00 m es arena fina mal gradada (SP) de compacidad mediana densa.

De los sondajes antes mencionados se resume la siguiente estratigrafía:

- Los primeros 0.50 m son rellenos compuestos por gravilla, restos de ladrillos y basura en general.
- De 0.50 m a 9.00 m es arena fina mal gradada (SP), de compacidad media a densa, ligeramente húmeda (humedades menores a 4%) con porcentaje de finos menores al 10%.

Ver perfil estratigráfico en Anexo 5.

Resumen de parámetros físicos mecánicos

Tabla 8-2: Resumen de parámetros físicos mecánicos

Ensayo	Muestra	Prof. (m)	W (%)	LL	LP	IP	Gr (%)	Ar (%)	Fi (%)	SUCS	φ	C
C-02	M-01	0.30 - 2.00	2.4	NP	NP	NP	0.0	96.1	3.3	SP	1	1
C-03	M-01	0.50 - 1.50	1.2	NP	NP	NP	0.0	96.1	3.9	SP	-	-
C-06	M-01	0.20 - 1.70	1.4	NP	NP	NP	0.0	97.0	3.0	SP	-	ı
C-06	M-02	1.70 - 2.00	3.8	NP	NP	NP	0.0	95.9	4.1	SP	ı	1
S-01	M-01	0.50 - 1.00	0.5	NP	NP	NP	0.0	90.9	9.1	SP-SM	-	1
S-01	M-02	1.00 - 1.45	1	NP	NP	NP	0.0	91.8	8.2	SP-SM	-	-
S-01	M-03	2.00 - 2.45	14.4	NP	NP	NP	0.0	92.7	7.3	SP-SM	-	ı
S-01	M-04	3.00 - 3.45	12.4	NP	NP	NP	0.0	90.4	9.6	SP-SM	-	1
S-01	M-05	4.00 - 4.45	18.9	NP	NP	NP	0.3	95.6	4.1	SP	-	1
E-09	ı	1.50 - 1.80	1	-	-	-	-	-	-	SP	29	0

Fuente: Tabla B-4, Apéndice B "Características Geotécnicas del Distrito de Villa El Salvador". Elaboración propia

Resumen de ensayos químicos recopilados

Estudio	Nombre del Estudio	Sulfatos (ppm)	Cloruros (ppm)	SST* (ppm)
E 53	E.S. Almacenes de Saga Falabella	375.0	0.0	500.0
E 54	E.S. de Tiendas por Departamento Ripley S.A.	1690.0	10.0	2722.0
E 65	E.M.S.F.C. Planta de Almacenamiento y Edific. de 1 a 2 Pisos para Oficinas	459.7	95.6	0.0

^{*}Sales Solubles Totales

Fuente: Tabla B-5, Apéndice B "Características Geotécnicas del Distrito de Villa El Salvador". Elaboración propia

De acuerdo con la Tabla 4.4 de la norma E.060 – Concreto armado, para contenidos de sulfato entre 1500 y 10000 ppm se considera una exposición severa, por lo que se deberá usar un cemento Tipo V y debe ser de una resistencia mínima de 31 MPa (310 kg/cm2).

Determinación de los parámetros de corte

De los ensayos de SPT se tiene lo siguiente:

La determinación de los parámetros de corte se realiza al nivel de fondo de zapata, de acorde al plano de arquitectura propuesto y la propuesta de cimentación se tiene que dicha profundidad es de 2.5 del nivel del terreno.

Tabla 8-3: Valores de N para la profundidad de cimentación.

Nombre del Estudio	Estudio	Valores de N de campo para una profundidad de 2.50 m.
E.S. Almacenes de Saga Falabella	SPT: E53	64
E.S. de Tiendas por Departamento Ripley S.A.	SPT: E54	47
Microzonificación Sísmica y Vulnerabilidad en la Ciudad de Lima	SPT: S-01	34

Fuente: SPT S-01, E53, E54, Apéndice B "Características Geotécnicas del Distrito de Villa El Salvador". Elaboración propia

Para la determinación de los parámetros de manera conservadora se opta por el N de campo menor, N = 34 golpes.

Para poder correlacionar el número de campo y obtener los parámetros de corte, es necesario obtener el N estándar, denominado N'₇₀.

Toda la corrección y correlación se realiza basado en el libro de (Bowles, 1996) Foundation Analysis and Design. 5^{to} edición.

The standard blow count N'_{70} can be computed from the measured N as follows:

$$N'_{70} = C_N \times N \times \eta_1 \times \eta_2 \times \eta_3 \times \eta_4 \tag{3-3}$$

where η_i = adjustment factors from (and computed as shown) Table 3-3

 N'_{70} = adjusted N using the subscript for the E_{rb} and the ' to indicate it has been adjusted

 C_N = adjustment for effective overburden pressure p'_o (kPa) computed [see Liao and Whitman (1986)]⁵ as

$$C_N = \left(\frac{95.76}{p'_o}\right)^{1/2}$$

TABLE 3-3 Factors η_i For Eq. (3-3)*

Hammer for η_1		Remarks			
	Average energy ratio E_r			tio E,	
	Donut		S	Safety	
Country	R-P Trip		R-P	Trip/Auto	R-P = Rope-pulley or cathead
United States/ North America Japan United Kingdom China	45 67 — 50	67 78 — —		80–100 — 60	$ \eta_1 = \mathbf{E}_r / \mathbf{E}_{rb} = E_r / 70 $ For U.S. trip/auto $w / \mathbf{E}_r = 80$ $ \eta_1 = 80 / 70 = 1.14 $
		Rod l	ength corr	ection η ₂	
]	Length	> 10 m 6-10 4-6 0-4	$ \eta_2 = 1.00 = 0.95 = 0.85 = 0.75 $	N is too high for $L < 10$ m
	S	ampler (correction	η_3	
Wit	th liner:	Withou Dense s Loose s	sand, clay	$ \eta_3 = 1.00 \\ = 0.80 \\ = 0.90 $	Base value N is too high with liner
1	Borehol	e diame	ter correct	ion η ₄	
Hole o	liameter	:† 60-	-120 mm 150 mm 200 mm	$ \eta_4 = 1.00 \\ = 1.05 \\ = 1.15 $	Base value; N is too small when there is an oversize hole

^{*} Data synthesized from Riggs (1986), Skempton (1986), Schmertmann (1978a) and Seed et al. (1985). † $\eta_4=1.00$ for all diameter hollow-stem augers where SPT is taken through the stem.

Fuente: (Bowles, 1996) De la tabla se obtiene:

Tabla 8-4: Valores de corrección del N70

N	Factor de corrección
N_1	1.14
N ₂	0.75
N ₃	0.80
N ₄	1.00

Fuente: Elaboración propia

Se asume una densidad de 18 kN/m³

$$C_N = \left(\frac{95.76}{P'_0}\right)^{\frac{1}{2}}$$

$$C_N = \left(\frac{95.76}{P'_0}\right)^{\frac{1}{2}}$$

$$P'_0 = 18 \times 2.5 = 45 \text{ kPa}$$

$$C_N = \left(\frac{95.76}{45}\right)^{\frac{1}{2}} = 1.46$$

$$N_{70} = C_N \times N \times n_1 \times n_2 \times n_3 \times n_4$$

$$N_{70} = 1.46 \times 34 \times 1.14 \times 0.75 \times 0.80 \times 1 = 33.95 \approx 34$$

TABLE 3-4 Empirical values for ϕ , D_r , and unit weight of granular soils based on the SPT at about 6 m depth and normally consolidated [approximately, $\phi = 28^{\circ} + 15^{\circ}D_r$ ($\pm 2^{\circ}$)]

	`				
Description	Very loose	Loose	Medium	Dense	Very dense
Relative density D _r	0	0.15	0.35	0.65	0.85
SPT N' ₇₀ : fine	1-2	3–6	7–15	16-30	?
medium	2-3	47	8-20	21-40	> 40
coarse	3–6	5–9	10–25	26–45	> 45
ϕ : fine	26-28	28-30	30-34	33-38	
medium	27-28	30-32	32-36	36-42	< 50
coarse	28-30	30-34	33–40	40-50	
γ_{wet} , kN/m ³	11-16*	14–18	17–20	1722	20-23

^{*} Excavated soil or material dumped from a truck has a unit weight of 11 to 14 kN/m³ and must be quite dense to weigh much over 21 kN/m³. No existing soil has a $D_r = 0.00$ nor a value of 1.00. Common ranges are from 0.3 to 0.7.

Fuente: (Bowles, 1996)

De la tabla se obtiene el parámetro ϕ , y considerando el parámetro de cohesión igual a 0.

$$\emptyset = 28^{\circ} + 15^{\circ} \times D_r$$

 $\emptyset = 28^{\circ} + 15^{\circ} \times 0.65 = 37.75 \approx 37^{\circ}$

Finalmente, si bien es cierto en el estudio E-09 que fue realizado en una profundidad de 1.50 m - 1.80 m se tiene un ángulo de fricción igual a 29°, se tomará el valor último calculado de los STP, ya que es a la profundidad a la cual se va a cimentar, y además es coherente que el valor sea mayor, debido a que a mayor profundidad la compacidad de la arena es mayor.

Para la determinación de la capacidad de corte se usa los métodos de Meyerhof y Vesic de acorde al libro de (Bowles, 1996) Foundation Analysis and Design. 5^{to} edición.

Tabla 8-5: Consideraciones para el cálculo de capacidad por corte

Parámetros	Valor	Unidad
Longitud (L)	2	m
Base(B)	2	m
Altura del relleno (Df)	1.5	M
Lado de la columna	0.4	m
Peso volumétrico natural (γ)	18	KN/m3
Angulo de fricción interna (ø)	36	(°)
Poisson (µ)	0.35	(-)

Fuente: Elaboración propia

Tabla 8-6: Cálculo de capacidad de corte por el método de Vesic

	Método d	e Vesic	
	c	q	y Vesic
N	22.01	11.66	12.26
S	1.53	1.48	0.60
d	1.30	1.23	1.00
i	1.00	1.00	1.00
Qult	708	kN/m ²	
q_{ult}	7.2	kg/cm ²	
Q _{adm}	2.4	kg/cm ²	

Fuente: Elaboración propia

Tabla 8-7: Cálculo de capacidad de corte por el método de Meyerhof

Método de Meyerhof			
	С	q	γ Meyerhof
N	22.01	11.66	7.80
S	1.51	1.25	1.25
d	1.24	1.12	1.12
i	1.00	1.00	1.00
Qult	639	kN/m ²	
Qult	6.5	kg/cm ² kg/cm ²	
q _{adm}	2.2	kg/cm ²	

Fuente: Elaboración propia

Tabla 8-8: Resumen de las condiciones de cimentación
RESUMEN DE LAS CONDICIONES DE CIMENTACIÓN
Tipo de cimentación: Cimentación superficial aislada
Profundidad del nivel freático: No presenta
Parámetros de diseño de la cimentación
Profundidad de Cimentación: 1.50 m

Presión: Admisible: 2.20 kg/cm²

Factor de seguridad por corte (estático): 3

Parámetros Sísmicos del suelo (De acuerdo con la Norma E.030)

Zona Sísmica: Z4

Tipo de perfil de suelo: S2 Factor de suelo (S): 1.05

Periodo TP (s): 0.6 Periodo TL (s): 2.0

Agresividad de Suelo

Presencia de sulfatos con grado de alteración severa, usar cemento portland Tipo V y con mínimo f'c = 310 kg/cm^2 .

Fuente: Norma E.050 Suelos y cimentaciones, Anexo I Formato obligatorio de la hoja de resumen de las condiciones de cimentación. Elaboración propia

8.2. Memoria de cálculo: Análisis sísmico

1. Descripción

La estructura propuesta, es un edificio de un semisótano, 04 pisos y una azotea. Es de configuración estructural regular en planta y en elevación, y está destinado al uso de vivienda multifamiliar. Está constituido por un sistema de muros estructurales de albañilería confinada y concreto armado en ambas direcciones principales.

La dimensión de las vigas, columnas, placas y losa se observa en los planos adjuntos al presente proyecto.

La edificación está ubicada en la avenida Magisterio, a una cuadra de la avenida El Sol, Villa El Salvador, Lima. Según el estudio de suelos los parámetros sísmicos del suelo se presentan en la Tabla 8-8.

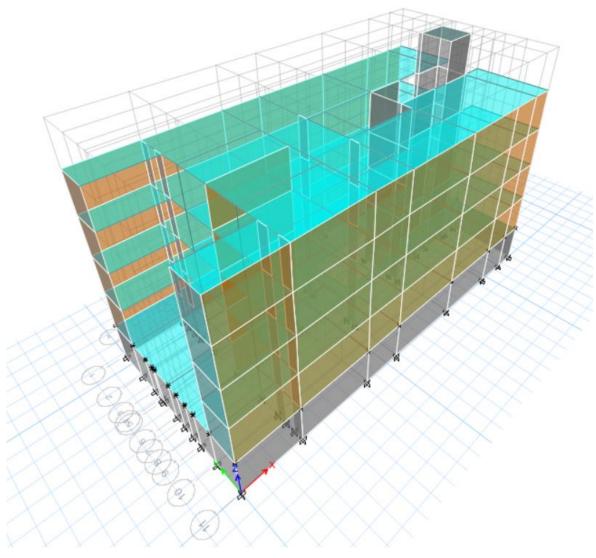


Figura 8-3. Modelo de la edificación en ETABS

2. Programas de Computo

Con el fin de realizar el análisis sísmico y el análisis estructural, se hizo uso del programa ETABS 2016 Ultimate 16.2.1 (Extended 3D Analysis of Building Systems). Para el cálculo de la cimentación se hizo uso de una hoja de cálculo en Excel, en donde se ha introducido todos los resultados del programa ETABS.

3. Propiedades mecánicas de los materiales

Para el análisis y diseño del edificio se han tomado los siguientes datos:

Acero de refuerzo

- Esfuerzo de fluencia = fy = 4,200 kg/cm2
- Módulo de elasticidad = Ea = 2,100,000 kg/cm2

Concreto

Resistencia nominal a compresión = f'c = 210 kg/cm2

- Módulo de elasticidad = Ec = 217,000 kg/cm2

Albañilería

- Resistencia a compresión de una pila = f'm = 65 kg/cm2
- Módulo de elasticidad = Em = 32,500 kg/cm2

4. Normatividad:

En todo el proceso de análisis y diseño se utilizarán las normas comprendidas en el Reglamento Nacional de Edificaciones (R.N.E.):

- Metrado de cargas: Norma E.020

- Diseño sismorresistente: Norma E.030

- Concreto armado: Norma E.060

- Suelos y cimentaciones: Norma E.050

- Edificaciones de albañilería: Norma E.070

5. Análisis sísmico

El análisis se realizó según la norma vigente RNE E.030 del Reglamento Nacional de Edificaciones. Considerando las condiciones de suelo, las características de la estructura y las condiciones de uso, se utilizaron los siguientes parámetros sísmicos:

- Factor de Zona: Z = 0.45 (Zona 4)

- Factor de Uso: U = 1.0 (Edificación Común)

- Factor de suelo: S = 1.05 (Suelo intermedio)

- Periodo de la plataforma Tp = 0.6 s

- Periodo que define el inicio de la zona del factor $C T_L = 2.0 s$

- Coeficiente de reducción Rx = 3 (Muros de Albañilería Confinada, estructura regular en planta y altura)
- Coeficiente de reducción Ry = 6 (Muros estructurales de Concreto Armado, estructura regular en planta y altura)

Espectros de respuestas en el eje X e Y

A partir de estos valores se determinó el espectro de pseudo aceleraciones, como se ve en las Figuras 8-4 y 8-5.

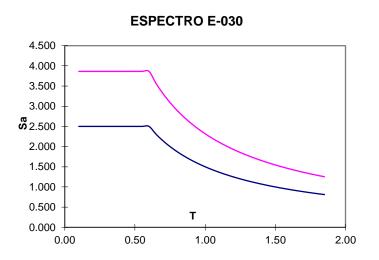


Figura 8-4. Espectro de pseudo aceleración eje XX

Figura 8-5. Espectro de pseudo aceleración eje YY

Cargas

Para efectos del análisis, las masas de los elementos modelados como columnas, muros y vigas fueron estimados por el programa ETABS, mientras que las masas de los demás elementos se estimaron a partir de los siguientes pesos:

Tabla 8-9. Cargas consideradas en el modelo

Carga	Tipo	Unidades	Valor
	Losa aligerada	kg/m2	300
	Losa maciza	kg/m3	2400
Muerta	Acabados	kg/m2	100
	Tabiquería	kg/m	546
	Parapeto	kg/m	252
Viva	Sobrecarga	kg/m2	200
, 114	Tabiquería móvil	kg/m2	50

Fuente: Reglamento Nacional de Edificaciones – Norma E.020. Elaboración propia

Cabe mencionar que, para el análisis sísmico, las cargas vivas han sido reducidas al 25% en concordancia con la NTE E-030.

6. Análisis estático

Comparación de las cargas vivas y muertas

Una forma de comprobar la representatividad del modelo computacional es comparando las reacciones de las cargas viva y muerta calculados manualmente con los calculados en el software. La Tabla 8-10 muestra la variación, el cual es mínimo. Por lo que sí existe representatividad del modelo.

Tabla 8-10. Comparación de carga viva calculada manualmente con el computacional

Elemento	Elemento Metrado de carga viva (T)		Carga viva computacional (T)	Variación (%)
Tabiquería móvil	58.0675			
Sobrecarga	240.125	306.0475	302.7472	1%
Ascensor	7.855			

Fuente: Elaboración propia

Comparación de las cortantes basales

La Norma E.030, en su artículo 29.4 indica que la cortante basal obtenida mediante una combinación modal espectral debe ser mayor al 80% de la obtenida mediante el método estático propuesto por la norma. Según la Tabla 8-11, se cumple la mencionada condición.

Tabla 8-11. Comparación de cortantes basales para cumplir con la E.030

Dirección	Peso (Tn)	Factor sísmico	Cortante basal estático (Tn)	Cortante basal ETABS (Tn)	0.8 Cortante basal estático	¿Cumple?
X-X	796.59	0.39375	313.66	264.48	250.93	Si
у-у	796.59	0.196875	156.83	163	125.46	Si

Fuente: Elaboración propia

7. Resultados

Periodos y Modos de Vibración

Con estas cargas y con las propiedades de las secciones transversales, se puede determinar los periodos de vibrar.

Se determinó 12 periodos de vibración. En la tabla siguiente se observa que el periodo fundamental en la dirección "Y" es igual a 0.276 segundos, mientras que en la dirección "X" es 0.124 segundos para el caso "Modal".

Tabla 8-12: Periodos y modos de vibración

Modo	Periodo (s)	(s) UX		RZ
1	0.276	3.59E-05	0.7502	0.0081
2	0.152	0.0394	0.0029	0.7472
3	0.124	0.7758	0.0001	0.0357
4	0.058	8.86E-06	0.178	0.0035
5	0.044	0.005	0.0056	0.1182

Fuente: Elaboración propia

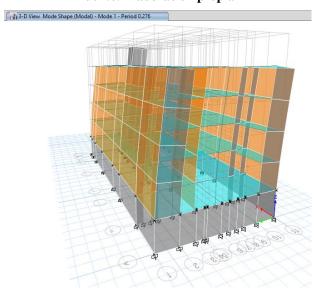


Figura 8-6. Vista del modo 1, T= 0.276 segundos, en el eje Y-Y

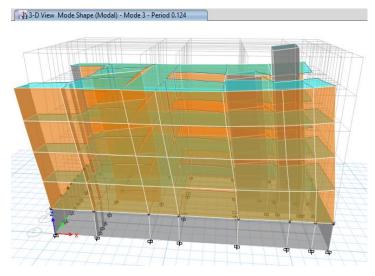


Figura 8-7. Vista del modo 3, T= 0.124 segundos, en el eje X-X

Distorsiones de entrepiso

Según la norma E.030 Diseño sismorresistente, para cada dirección de análisis, las distorsiones calculadas por el programa deben ser multiplicados por 0.75 R, debido que es una estructura de configuración estructural regular en planta y altura. En la Tabla 8-13 y 8-14 se muestran las distorsiones calculadas:

Tabla 8-13: Distorsiones máximas en el eje Y-Y

Piso	Caso de carga	Dirección	Distorsión	0.75R
Azotea	Sismo en X Max	X	0.00019	0.0004275
Piso 4	Sismo en X Max	X	0.000185	0.00041625
Piso 3	Sismo en X Max	X	0.00022	0.000495
Piso 2	Sismo en X Max	X	0.000233	0.00052425
Piso 1	Sismo en X Max	X	0.000176	0.000396

Fuente: Elaboración propia

Tabla 8-14: Distorsiones máximas en el eje Y-Y

Piso	Caso de carga	Dirección	Distorsión	0.75R
Azotea	Sismo en Y Max	Y	0.000621	0.0027945
Piso 4	Sismo en Y Max	Y	0.000575	0.0025875
Piso 3	Sismo en Y Max	Y	0.000562	0.002529
Piso 2	Sismo en Y Max	Y	0.000493	0.0022185
Piso 1	Sismo en Y Max	Y	0.000336	0.001512

Fuente: Elaboración propia

Como se observa en las Tablas 8-13 y 8-14, la distorsión de la estructura en estudio es menor a 0.005 en la dirección X y 0.007 en la dirección Y, que es lo máximo permitido por la RNE E.030, por lo que se concluye que la estructura tiene suficiente rigidez en la dirección X e Y como para resistir las cargas sísmicas.

8.3. Memoria de cálculo: Diseño estructural de elementos de concreto armado

8.3.1 Análisis y diseño de la placa más cargada PL-02

a) Diseño preliminar

> Solicitaciones de carga a la que se encuentra expuesta la placa.

Tabla 8-15. Casos de carga axial, momentos y cortantes

	P	M	V					
CM	14.89	0.68	0.38					
CV	1.95	0.24	0.13					
CS	0.98	45.24	9.75					

Fuente: Elaboración propia

➤ La norma E.060 indica que se debe realizar 5 combinaciones de carga como se muestra en la Tabla 8-16.

Tabla 8-16: Combinaciones de cargas

	PU	MU	VU
C1	24.16	1.36	0.75
C2	22.03	46.39	10.39
C3	20.07	-44.09	-9.11
C4	14.38	45.85	10.09
C5	12.42	-44.63	-9.41

Fuente: Elaboración propia

Verificación de espesor mínimo $e = hp/25 \rightarrow 2.70/25 = 0.108 \text{ m}$, ok cumple ya que el espesor de la placa es 0.20 m

Diseño por flexión

Peralte efectivo $d = 0.8 \text{ Lm} = 0.8 \text{ x} \cdot 2.25 = 1.80 \text{ m}$

$$a = d - \sqrt{d^2 - \frac{2 \times Mu}{\emptyset \times 0.85 \times f'c \times b}}$$

$$a = 180 - \sqrt{180^2 - \frac{2 \times 46.39}{0.90 \times 0.85 \times 210 \times 20}}$$

$$a = 8.21 cm$$

$$\Rightarrow As = \frac{0.85 \times f'c \times b \times a}{fy}$$

$$\Rightarrow As = \frac{0.85 \times 210 \times 20 \times 8.21}{4200}$$

$$\Rightarrow As = 6.98 cm2$$

Se considerará el 100% del acero obtenido y se verificará con el diagrama de interacción de diseño \rightarrow 100% As = 100% 6.98 cm² \rightarrow 4 Ø 5/8" aproximadamente.

> Predimensionamiento

Para:
$$P_u = 22.03$$
 tonf
$$P_{confinamiento} = \frac{P_u}{2} + \frac{M_u}{L_m}$$

$$P_{confinamiento} = 31.64 \ tonf$$

Cálculo de h'= distancia medida desde la cara exterior de la columna Condición:

$$P_{confinamiento} \le \emptyset(0.85 \times f'c(A_{confinada} - A_s) + A_s \times fy)$$

 $31640 \le 0.70(0.85 \times 210(20 \times h' - 4 \times 2) + 4 \times 2 \times 4200)$
 $h' = 3.65 cm$

Por lo tanto, se considerará h'=20.00 cm para que tenga la misma dimensión del espesor del muro.

Diseño por corte

Para:
$$V_u = 10.39$$
 tonf
Hallamos $\alpha_c = \text{hm/Lm} = 13.50/2.25 = 6.00$, como $6.0 \ge 2 \rightarrow \alpha_c = 0.53$

Condición:

$$V_u \le \emptyset(V_c + V_s)$$

$$\emptyset V_c = \emptyset \times \alpha_c \times \sqrt{f'c} \times A_{cw})$$

$$\emptyset V_c = 0.85 \times 0.53 \times \sqrt{210} \times 20 \times 185)$$

$$\emptyset V_c = 24.15 \text{ tonf}$$

$$\rightarrow V_c = 28.41 \text{ tonf}$$

Como $Vu \le \emptyset$ Vc, entonces usar acero mínimo horizontal en el alma de la placa (la cuantía mínima es de 0.0025)

Espaciamiento entre acero horizontal del alma Sh para acero de 3/8"

$$\rho_h = As/Ag$$

$$0.0025 = 2 \times 0.71/(S_h \times 20) \rightarrow S_h = 28.40 \text{ cm, usar } S_h = 25 \text{ cm}$$

Cuantía horizontal real ρ_{hr} :

$$\rho_{hr} = 2x0.71/(20x25) = 0.00284$$

Verificación de la cuantía vertical ρ_v :

$$\begin{split} \rho_v = \ 0.0025 + 0.5(2.5 - H_m/L_m)(\ \rho_{hr} - 0.0025) \ \geq \ 0.0025 \\ \rho_v = \ 0.0025 + 0.5(2.5 - 13.50/2.25)(\ 0.00284 - 0.0025) \ \geq \ 0.0025 \\ \rho_v = \ 0.0019 \\ \rho_v = \ 0.0019 \ \leq \ 0.0025, entonces\ usar\ \rho_v \ = \ 0.0025 \end{split}$$

Espaciamiento entre acero vertical del alma S_v para acero de 3/8"

$$\rho v = As/Ag$$

$$0.0025 = 2x0.71/(S_v 20) \rightarrow S_v = 28.40 \text{ cm, usar } S_v = 25 \text{ cm}$$

Cantidad de acero vertical en el alma:

$$\# \ acero = \frac{185}{25} = 7.40 \rightarrow 8 \ \emptyset 3/8 "a \ cada \ lado$$

Distribución preliminar del acero en la placa para obtener su diagrama de interacción.

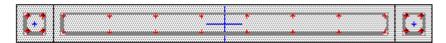


Figura 8-8. Distribución del acero en la placa

➤ Para el trazado del diagrama de interacción nominal de la mencionada placa se usó el software ETABS 2016 Ultimate 16.2.1. obteniendo los resultados según la siguiente gráfica.

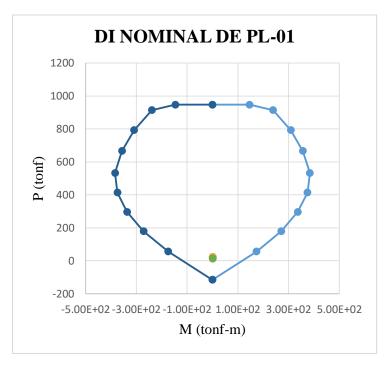


Figura 8-9: Diagrama de interacción nominal, PL-01

Se observa que las combinaciones se encuentran dentro del diagrama de interacción. Según el diagrama de interacción nominal, para un Pu=22.03 tonf se obtiene la distancia del eje neutro (medido desde la fibra más comprimida) de C=24.71 cm y un momento nominal Mn=140.22 tonf.m

b) Diseño por capacidad

Verificación del factor de amplificación

$$140.22/46.39 = 3.02 \le 6$$

Entonces se considera un factor de amplificación Mn/Mua = 3.02

Cortante ultima de diseño, Vu = Vua (Mn/Mua)

$$Vu = 10.39 \times (3.02) = 31.78 tn$$

Verificación del cortante ultimo de diseño

$$V_u \le \emptyset(V_c + V_s)$$

$$\emptyset V_c = \emptyset \times \alpha_c \times \sqrt{f'c} \times A_{cw})$$

$$\emptyset V_c = 0.85 \times 0.53 \times \sqrt{210} \times 20 \times 185)$$

$$\emptyset V_c = 24.15 \text{ tonf}$$

$$\rightarrow V_c = 28.41 \text{ tonf}$$

Como $Vu \ge \emptyset$ Vc, entonces usar acero en el alma de la placa.

$$V_u = \emptyset (V_c + V_s)$$

$$V_s = V_u/\emptyset - V_c$$

$$V_s = 31.78 / 0.85 - 28.41 \rightarrow V_s = 8.98 \ tonf$$
Cuantía horizontal
$$\rho_h = Vs/(Acw \ fy)$$

$$\rho_h = 8.98 / (20x225x4200)$$

 $\rightarrow \rho_h = 0.0000005475 \le \rho_{minima}$, entonces usar $\rho_{minima} = 0.0025$

Espaciamiento horizontal $S_h = As/(\rho h t)$

$$S_h = 2x0.71/(0.0025x20)$$

 $Sh = 28.40 cm$
 $\rightarrow \emptyset 3/8" @ 0.25 m$

Este mismo espaciamiento se les colocara a las barras verticales para tener una mejor proporcionalidad y distribución del acero en la placa.

c) Verificaciones

Verificación de la cortante nominal

Condición
$$Vn \leq 2.6\sqrt{f'c}\,A_{cw}$$

$$V_n = V_c + V_s$$

$$Vn = Vc + \rho_h\,A_{cw}\,fy$$

$$Vn = 28.41 + 0.0025(20\times225)4200/1000$$

$$\to Vn = 75.76\,tonf$$

$$2.6\sqrt{f'c} \ Acw = 2.6 \times \sqrt{210} \times 20 \times 225 = 169.55 \ tonf$$

 $Como\ 75.76\ tonf \leq 169.55\ tn, ok\ cumple$

Verificación de esfuerzo de tracción en extremos

$$\sigma = \left| \frac{Pu}{Ag} + \frac{Mu \ C}{Ig} \right| \le 2.1 \sqrt{f'c}$$

$$\left| \frac{22030}{20x225} - \frac{46.39x10^5x24.71}{20x225^3/12} \right| \le 2.1 \sqrt{210}$$

$$\sigma = 1.14 \, kg/cm2 \leq 30.43 \, kg/cm2$$
, entonces ok cumple

➤ De acuerdo a la norma E.060 los elementos de borde en las zonas de compresión deben ser confinados cuando la profundidad del eje neutro exceda de:

$$C \ge \frac{Lm}{600(\delta u/hm)}$$

La deriva de la placa, de acuerdo al modelo del edificio en ETABS, resulto según la siguiente ecuación e imagen.

 δ u/hm =0.85 (0.003395) 6x1x1/13.50 = 0.00128, entonces δu/hm debe ser igual a 0.007 de acuerdo a la norma.

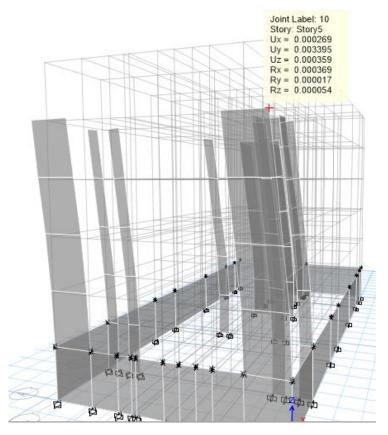


Figura 8-10: Desplazamiento total en la placa

$$24.71 \ cm \ge \frac{225}{600(0.007)} = 53.57 \ cm$$

→ no es necesario confinar los elementos de borde

Verificación de la extensión horizontal en los elementos de confinamiento

$$\begin{cases} 24.71 - 0.10(225) = 2.21 \ cm \\ \frac{c}{2} = \frac{24.71}{2} = 12.36 \ cm \end{cases}$$
 (Se elige el mayor)

Se concluye que no es necesario confinar, pero igual se realizará de acuerdo a la buena práctica de la ingeniería. Por lo tanto, el elemento de borde de 20 cm x 20 cm propuesto inicialmente (en la Figura 8-8) cumple todas las condiciones halladas.

8.3.2 Análisis y diseño de vigas

Para el diseño por flexión se consideraron los siguientes aspectos:

Altura en compresión:

$$a = d - \sqrt{d^2 - \frac{2 \times Mu}{0.85 \times 0.9 \times fc \times b}}$$

Área de acero:

$$As = \frac{0.85 \times f'c \times b \times a}{fy}$$

Acero mínimo según RNE E.060:

$$Asmin = \frac{0.7 \times \sqrt{f'c}}{fy} bd$$

Acero máximo según RNE E.060:

$$Amax = 0.75 \times 1.19 \times 10^{-4} f'c\beta 1 \times bd$$

Además, se opta por utilizar varillas de 5/8" de diámetro para el refuerzo longitudinal de las vigas para las cargas demandadas en la estructura (ver Tabla 8-17). Los detalles se encuentran en los planos de estructuras.

Tabla 8-17: Cálculo de número de varillas longitudinales requeridas en las vigas.

Sección		Positivo/		Momento demandado (Tn.m)			Número de varillas longitudinales (5/8'')		
Ubicación	b (cm)	h (cm)	Negativo	Izquierda	Centro	Derecha	Izquierda	Centro	Derecha
Eje 2 y 9/A-B	20	50	-	0.00	0.00	5.39	2	2	2
9/A-B	20	30	+	0.00	5.83	0.00	2	2	2
Eje B/1-2 y 9-10	25	50	-	-	-	3.59	2	2	2
y 9-10	23	30	+	-	-	8.53	3	3	3
	25	50	-	0.91	0.00	0.00	2	2	2

Ubicación	Sección		Positivo/	Momen	to dema (Tn.m)	ndado	Número de varillas longitudinales (5/8'')		
	b (cm)	h (cm)	Negativo	Izquierda	Centro	Derecha	Izquierda	Centro	Derecha
Eje B/2-3 y 8-9			+	8.51	2.86	0.67	3	2	2
Eje B/4-5	25	50	-	3.34	0.00	0.00	2	2	2
y 5-8	23	30	+	0.00	1.58	4.96	2	2	2
Eje 3 y	20	50	-	10.19	0.00	1.49	4	2	2
8/B-C	20	30	+	0.00	7.12	0.00	2	3	2
Eje C/1-5	25	50	-	0.00	0.00	16.10	4	2	6
y 5-10	23	30	+	0.00	10.12	0.00	2	3	2
Eje D/1-4	20	50	-	0.00	0.00	3.60	2	2	2
y 7-10	20	30	+	0.00	2.00	0.59	2	2	2
Eje D/3-7	20	50	-	4.33	0.14	4.38	2	2	2
Ejc D/3-7	20	30	+	2.49	1.04	2.46	2	2	2
Eje 4 y	25	50	-	2.18	0.00	8.60	2	2	3
7/D-E	23	30	+	0.15	5.53	0.00	2	2	2
Eje E/1-4	25	50	-	0.00	0.00	4.40	2	2	2
Lje L/1-4	23	30	+	0.00	1.85	0.00	2	2	2
Eje E/7-	25	50	-	4.64	0.00	0.00	2	2	2
10	23	30	+	0.00	1.93	0.00	2	2	2
Eje G/1-4	25	50	-	0.00	0.00	2.91	2	2	2
y 6-10	23	30	+	0.00	1.06	0.66	2	2	2
Eje 4 y	20	50	-	1.45	-	-	2	2	2
6/G-H	20	30	+	3.17	-	-	2	2	2
Eje H/1-4	20	20	-	0	0	0.43	2	2	2
y 6-10	20	20	+	0	0.24	0	2	2	2
Eje 5/A-B	20	50	-	2.38	0.00	0.00	1	1	1
ъјс <i>Эг</i> Т- В	20	50	+	0.00	4.61	6.08	1	1	1
Escalera 1	15	50	-	2.49	-	-	2	2	2
Lisearcia 1	13	50	+	2.7	-	-	2	2	2
Escalera 2	15	50	-	7.23	-	-	3	3	3
Liscarcia 2	13	30	+	6.6	-	-	3	3	3

Por otra parte, se evalúa las fuerzas cortantes actuantes en las vigas tomando en consideración las siguientes expresiones:

Resistencia del concreto según RNE E.060:

$$\emptyset Vc = \emptyset 0.53 \times \sqrt{f'c} \times b \times d$$

Resistencia de estribos de acero según RNE E.060:

$$Vs = \frac{Vu}{\phi} - Vc$$

Espaciamiento de estribos según RNE E.060:

$$s = \frac{Av \times fy \times d}{Vs}$$

Espaciamiento mínimo según RNE E.060:

- No se debe exceder d/2 para elementos no preesforzados.
- Tampoco se puede superar 600mm.

Tabla 8-18: Espaciamientos de estribos en vigas.

Tabla 8-18: Espaciamientos de estribos en vigas.								
	Sec	ción	φVc	Vu	Vs		s'	
Ubicación	b	h	(Tn)	(Tn.m)	(Tn)	s (cm)	(cm)	Descripción
	(cm) (cm) (111) (111.111) (111.111)		(111)		(CIII)			
Eje 2 y 9/A-B	20	50	5.74	9.52	4.44	59.09	22	Variable
Eje B/1-2 y 9-10	25	50	7.18	12.31	6.03	43.49	22	Constante
Eje B/2-3 y 8-9	25	50	7.18	12.04	5.72	45.91	22	Constante
Eje B/4-5 y 5-8	25	50	7.18	5.95	Ok	-	22	Constante
Eje 3 y 8/B-C	20	50	5.74	8.36	3.08	85.30	22	Variable
Eje C/1-5 y 5-10	25	50	7.18	12.95	6.79	38.67	22	Variable
Eje D/1-4 y 7-10	20	50	5.74	3.72	Ok	-	22	Variable
Eje D/3-7	20	50	5.74	4.50	Ok	-	22	Variable
Eje 4 y 7/D-E	25	50	7.18	8.34	1.36	192.49	22	Variable
Eje E/1-4	25	50	7.18	3.57	Ok	-	22	Variable
Eje E/7-10	25	50	7.18	3.62	Ok	-	22	Variable
Eje G/1-4 y 6-10	25	50	7.18	3.45	Ok	-	22	Variable
Eje 4 y 6/G-H	20	50	5.74	3.44	Ok	-	22	Constante
Eje H/1-4 y 6-10	20	20	1.83	0.32	Ok	-	7	Variable
Eje 5/A-B	20	50	5.74	9.95	4.95	53.04	22	Variable
Escalera 1	15	50	4.31	3.86	Ok	-	22	Constante
Escalera 2	15	50	4.31	15.44	13.10	20.04	20	Variable

Fuente: Elaboración propia

De acuerdo con la Tabla mostrada, se observa que existen pocos casos donde el espaciamiento requerido es menor al espaciamiento máximo. Para esos casos, y el resto de los casos, se optará de forma conservadora por la siguiente distribución de estribos:

Estribos de \(\phi \) 3/8", 1@ 0.05, 6@ 0.10, Rto. @ 0.25

8.3.3 Análisis y diseño de columnas

Las cargas actuantes en las columnas aisladas, obtenidos del modelo numérico, C-05, C-01 y C-07 (nombres asignados según el plano de Estructuras) son las siguientes:

Tabla 8-19. Fuerzas actuantes de las columnas.

Elemento	Dimension	nes (m)	Momento (Tn.m) x-x y-y			cortante Tn)	Carga axial (Tn)
	X-X	y-y			X-X	y-y	Z
C-01	0.25	0.4	6.08	4.57	3.51	4.61	57.47
C-05	0.25	0.7	18.60	1.48	0.85	13.00	60.00
C-07	0.2	0.7	8.13	0.97	0.67	5.29	69.80

Fuente: Elaboración propia

Las cargas mostradas en la Tabla 8.16 se deben graficar en el diagrama de interacción de las respectivas columnas. Para la construcción de dichos diagramas se realizan las siguientes consideraciones:

Compresión pura:

$$\alpha \emptyset Po = 0.7 \times 0.8 \times (0.85 \times f'c \times (Ag - Ast) + fy \times Ast)$$

Distancia al eje neutro en falla balanceada:

$$cb = \frac{Ecu \times Es \times d}{fy + \varepsilon cu \times Es}$$

Tracción pura:

$$\emptyset To = 0.9 \times Ast \times fy$$

Los siguientes gráficos corresponden a los diagramas de interacción de las columnas aisladas. En estas se grafica las cargas actuantes como un punto. Para verificar si la columna cumple, dicho punto debe encontrarse dentro del diagrama de diseño.

Figura 8-11. Diagrama de interacción de la columna C-01

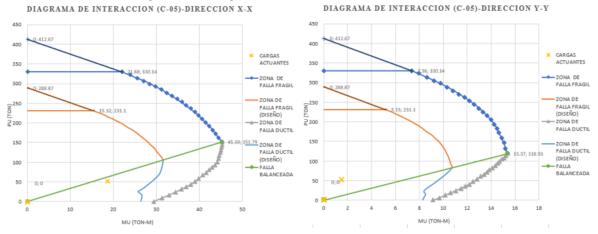


Figura 8-12. Diagrama de interacción de la columna C-05

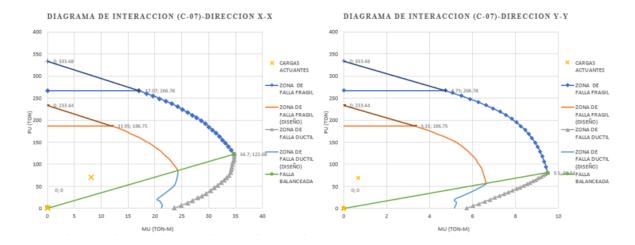


Figura 8-13. Diagrama de interacción de la columna C-07

Para todos los casos las fuerzas actuantes se encuentran dentro del diagrama de interacción de diseño de las respetivas columnas. Por ello, las columnas sí cumplen con las fuerzas axiales y momentos actuantes. Seguidamente se diseñará y verificará el refuerzo para resistir las fuerzas cortantes.

Consideraciones:

Fuerza cortante resistente Vc:

$$Vc = 0.53 \times \sqrt{f'c} \times b \times d \times \left(1 + \frac{Nu}{140 \times Ag}\right)$$

Se hace la comparación de las fuerzas cortantes actuantes y con fuerza actuante resistente.

Tabla 8-20. Fuerzas cortantes actuantes y resistentes para las columnas

Elemento	Dimensiones		Fuerza cortante (Tn)		Carga axial (Tn)	φVc (Tn)
	a (cm)	b (cm)	X-X	y-y	Z	
C-01	25	40	3.51	4.61	57.47	8.67
C-05	25	70	0.85	13.00	60.00	13.39
C-07	20	75	0.67	5.29	69.80	12.28

Fuente: Elaboración propia

Dados que en todos los casos las fuerzas cortantes actuantes no superan a la resistida por el concreto, el diseño conservador del refuerzo será el siguiente:

8.3.4 Análisis y diseño de losa aligerada y maciza

Para el diseño de la losa aligerada se utilizó la alternancia de carga, para determinar la carga última, para su posterior diseño, la cual se muestra en la siguiente Tabla 8-21 y Figura 8-14.

Tabla 8-21. Cálculo de la carga distribuida última de la losa

	Cálculo de Wu								
СМ	P. losa	300	kgf/m						
CIVI	P. piso terminado	100	kgf/m						
CV	S/C	200	kgf/m						
	P. tabiquería móvil	50	kgf/m						
	Wu	985	kgf/m						

La longitud total de una vigueta de la losa es de 11.85 m, medida de eje a eje de sus apoyos extremos. Interiormente tiene 3 apoyos simplemente apoyados como se muestra en la Figura 8-14.

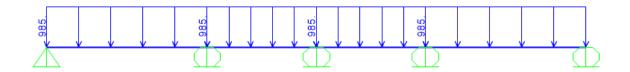


Figura 8-14. Carga ultima sobre la vigueta de la losa, kgf

Mediante el programa SAP2000, se analiza la losa y se hallan sus fuerzas internas debido a la carga última solicitada. Las Figuras 8-15 y 8-16 muestran el diagrama de momento flector y de fuerza cortante de la vigueta de la losa aligerada.

Figura 8-15: Diagrama de momento flector debido a la carga ultima, tonf-m.

Alternancia de la carga viva para momento positivo

La alternancia de carga se aplica con el fin de obtener un máximo momento positivo con el cual se diseñará el refuerzo positivo de la losa.

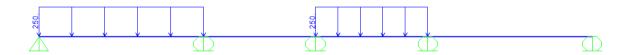


Figura 8-16: Alternancia de carga viva sin amplificar, kgf.

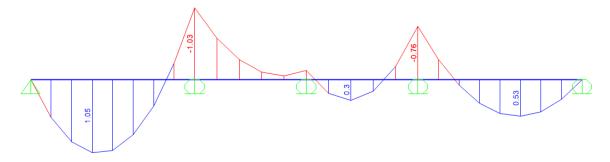


Figura 8-17: Diagrama de momento flector debido a la alternancia de cargas, tonf-m (cargas amplificadas)

Alternancia de la carga viva para momento negativo

La alternancia de carga se aplica con el fin de obtener un máximo momento negativo con el cual se diseñará el refuerzo negativo de la losa.

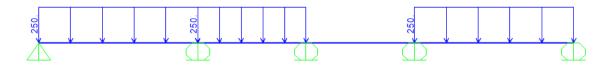


Figura 8-18: Alternancia de carga viva sin amplificar, kgf.

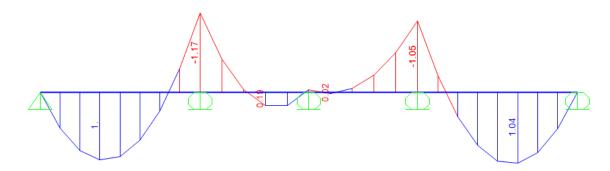


Figura 8-19: Diagrama de momento flector debido a la alternancia de cargas, tonf-m (cargas amplificadas)

Los valores de la envolvente de momentos de una vigueta de la losa aligerada se detallan en la Tabla 8-22.

Tabla 8-22: Valores de la envolvente de momento de diseño

	M	Envolvente de momentos											
Condición	(tonf- m)	Т	ramo	1	Т	ramo	2	Т	ramo	3	Т	ramo	4
Sin	M-	0.51	-	1.00	1.01	-	0.10	0.10	-	1.01	0.96	-	0.29
alternancia	M+	-	1.0	-	-	0.1	-	-	0.1	-	-	1.0	0.00
Alternanci	M-	0.51	-	0.85	- 0.94	0.0	- 0.11	0.05	-	0.64	0.68	-	0.29
a para M+	M+	-	1.0	-	-	-	-	-	0.3	-	-	0.5	0.00
Alternanci	M-	0.51	-	1.03	1.03	0.0	-	0.02	-	0.95	0.86	-	0.51
a para M-	M+	-	1.0	-	-	0.1 9	-	-	0.0	-	-	1.0	0.00
M. máximo	М-	0.51	0.0	1.03	1.03	0.0	- 0.11	- 0.10	0.0	- 1.01	- 0.96	0.0	0.51
de diseño	M +	-	1.0 5	-	-	0.1 9	-	-	0.3	-	-	1.0 4	-

Para realizar el diseño de la losa a flexión se usa la siguiente fórmula para calcular el valor de "a" según el rectángulo de Whitney.

$$a = d - \sqrt{d^2 - \frac{2 \times |Mu|}{\emptyset \times 0.85 \times f'c \times b}}$$

Tabla 8-23: Calculo de la distancia "a" de la vigueta de la losa aligerada.

Condición	Envolvente de momentos											
Condicion	Tramo 1			Tramo 2		Tramo 3		Tramo 4				
"a" superior (cm)	0.47	-	0.97	0.97	-	0.1	0.09	-	0.95	0.9	-	0.47
"a" inferior (cm)	-	4.42	-	-	0.71	-	-	1.14	-	-	4.37	-

Fuente: Elaboración propia

Tabla 8-24: Detalle de la cantidad de acero para la vigueta de la losa aligerada.

Condición		Acero superior e inferior										
Condicion	T	ramo	1	1	ramo	2	Т	ramo	3	Т	ramo	4
"As" superior	0.8	0	1.6	1.6	0	0.17	0.15	0	1.61	1.53	0	0.80
(cm2)	0	0	5	5	0	2	6	0	7	5	0	5
"As" inferior (cm2)	-	1.88	-	-	0.30	-	-	0.48	-	-	1.86	-

En la Tabla 8-25 se muestra los aceros mínimos y máximos de la losa aligerada

Tabla 8-25: Acero mínimo para losa aligerada de 20 cm de espesor.

As máx	2.71	cm2	As mín	0.99	cm2
As máx. +	7.49	cm2	As mín. +	0.41	cm2

Fuente: Elaboración propia

Verificación por cortante

A continuación, se hace una verificación por cortante si la vigueta necesita un ensanche, para lo cual, se calcula la cortante a una distancia "d" de la cara de la columna. Los diagramas de cortantes últimos sin alternancia de cargas, con alternancia de cargas para momento positivo y con alternancia de cargas para momentos negativos se presentan a continuación respectivamente.

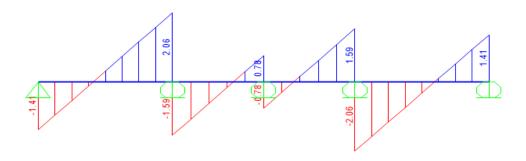


Figura 8-20: Diagrama de fuerza cortante debido a la carga ultima, tonf.

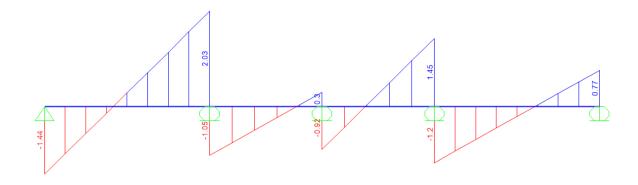


Figura 8-21: Diagrama de fuerza cortante debido a la alternancia de cargas (+), tonf (cargas amplificadas)

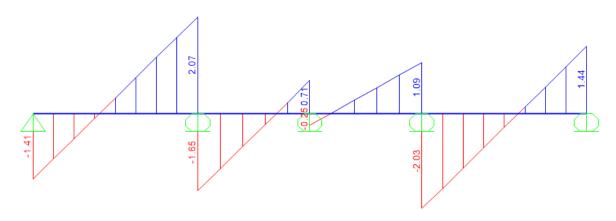


Figura 8-22: Diagrama de fuerza cortante debido a la alternancia de cargas (-), tonf (cargas amplificadas)

Tabla 8-26: Valores de la envolvente de la cortante de diseño

Condición	V	Envolvente de momentos								
Condicion	(tonf)	Tran	Tramo 1		Tramo 2		Tramo 3		10 4	
Sin	V+		1.79		0.49		1.32		1.17	
alternancia	V-	-1.17		-1.32		-0.49		-1.79		
Alternancia	V+		0.61		0.15		1.18		0.63	
para M+	V-	-1.07		-0.89		-0.63		-1.05		
Alternancia	V+		1.78		0.44		0.94		1.20	
para M-	V-	-1.16		-1.39		-0.09		-1.77		
V. máximo	V+	0.00	1.79	0.00	0.49	0.00	1.32	0.00	1.20	
de diseño	V-	- 1.17	•	- 1.39	•	- 0.63	-	- 1.79	-	

Para lo cual, se tuvo como cortante máximo Vud= 1.79 tonf. La condición que debe cumplir es la siguiente ecuación:

$$Vud < \emptyset Vc$$

$$Vc = 1.1 * (0.53 * \sqrt{f'c} * bw * d) = 1.1 * 0.53 * \sqrt{210} * 10 * 17 = 1.44 ton$$

 $\emptyset Vc = 1.22 ton$

Verificamos la siguiente condición. $Vud < \emptyset Vc$, por ello se tiene:

$$1.79 \le 1.22 \ \textit{No cumple}!!$$

Por lo tanto, **necesita ensanche** de vigueta. El ensanche de vigueta, proporciona la siguiente resistencia a corte.

$$Vud < \emptyset Vc$$

$$Vc = 1.1 * (0.53 * \sqrt{f'c} * bw * d) = 1.1 * 0.53 * \sqrt{210} * 25 * 17 = 3.59 ton$$

 $\emptyset Vc = 2.97 ton$

Verificamos la siguiente condición. $Vud < \emptyset Vc$, por ello se tiene:

$$1.79 \le 2.97 \ cumple!!$$

Por lo tanto, l'ensanche de vigueta se debe realizar alternando un ladrillo (ver detalle en palan de estructuras).

Observación: para el tramo 2, necesita ensanche de vigueta cuya longitud debe ser a la dimensión del ladrillo de techo, mientras que para el tramo 4 el ensanche tiene una longitud de 2 ladrillos de 30 cm cada uno.

8.3.5. Memoria de cálculo de zapata aislada, C-01

En la siguiente tabla se muestra los siguientes datos para el pre dimensionamiento de la zapata aislada

Tabla 8-27. Dato de diseño de Zapata

	P	Mx	My
CM	34.54	0.22	0.25
CV	13.27	0.1	0.14
CSX	0.65	0.05	-
CSY	6.25	-	6.57
	σ adm=	22	tonf/m2

Fuente: Elaboración propia

Predimensionamiento

$$Azap=1.60\ m2$$

$$B = 2.0 \ m$$

 $Usar\ como\ base: B=2.00\ m\ y\ l=1.45m$

Tabla 8-28. Verificación de la capacidad admisible del suelo

Verificaciones							
Verificación sin sismo	verificación tracción sin sismo						
$\sigma_1 = 18.995 \ tonf/m2 \le \sigma_{adm} \to 0k!$	$\sigma_1 = 33.34 \ ton/m2 \le \sigma_{adm} \to 0k!$						
T 7 +00 +7 +	WI 160 17 1 17						
Verificación sismo x	Verificación tracción sismo x						
$\sigma_2 = 19.31 \ tonf/m2 \le 1.3 \sigma_{adm} \rightarrow 0 \ k!$	$\sigma_2 = 29.56 \ ton/m2 \le 1.3 \sigma_{adm} \rightarrow 0 \ k!$						
Verificación sismo en y	verificación tracción sismo y						
$\sigma_3 = 28.16 \ tonf/m2 \le 1.3 \sigma_{adm} \rightarrow 0 \ k!$	$\sigma_3 = 26.61 \ ton/m2 \le 1.3 \sigma_{adm} \rightarrow 0k!$						

Fuente: Elaboración propia

Tabla 8-29. Cálculo de esfuerzo último de diseño

ESFUERZOS ULTIMOS						
σ u1=	29.44	tonf/m2				
σ u2= 24.14 tonf/m2						

ESF	ESFUERZOS ULTIMOS					
σ u3=	u3= 35.20 tonf/m2					
σ u=	35.20 tonf/m2					

Diseño Por Punzonamiento

Para el cálculo del peralte de la cimentación se utilizó la siguiente expresión:

$$d^{2} + \left(\frac{b+h}{2}\right)d - \frac{P_{u}}{4 * \emptyset * 1.06 * \sqrt{f'c}} \ge 0$$

Tabla 8-30. Peralte estimado, d

d =	20.08	cm
usar d =	60	cm

El peralte mínimo recomendado por la norma E.060 es de 40 cm, pero por casos prácticos de proceso constructivo se considerará un peralte de 60 cm el cual corresponde a la mayoría de la cimentación (esto se hace con el fin de mantener la cimentación a un mismo nivel)

Tabla 8-31. Verificación por cortante, flexión y cálculo de acero para la zapata

VERIF	FICACIO	N POR	CORTE	VERIFICACION POR CORTE			
	(direc	ción x)			(direc	cción y)	
Vult=	1.76	tonf	ОК	Vult=	1.28	tonf	ОК
Ø*Vc=	95.18	tonf		Ø*Vc=	69.01	tonf	
DISEÑO I	lirección x)	DISEÑO	POR FL	EXION (dirección y)		
Mu=	13.75	tonf-m		Mu=	9.97	tonf-m	
a=	0.49	cm		a=	0.49	cm	
As=	6.09	cm2		As=	4.41	cm2	
Asmin=	21.60	cm2		Asmin=	15.66	cm2	
usar As=	21.60	cm2		usar	15.66	cm2	
				As=			
	para fier	ro de 1/2'	1		para fier	rro de 1/2	1
S=	11.94	cm	→ S=10 cm	S=	11.94	cm	→ S=10
							cm
	para fier	ro de 5/8'			para fie	rro de 5/8	1
S=	18.528	cm	\rightarrow S=15 cm	S=	18.528	cm	→ S=15

VERIF	CORTE	VERIFICACION POR CORTE					
	(direc	ción x)			(direc	eción y)	
							cm
	para fier	ro de 3/4"			para fier	ro de 3/4'	•
S=	26.39	cm	→ S=25 cm	S=	26.39	cm	→ S=25
							cm

Por lo tanto, las dimensiones de la zapata en la dirección x es de 1.45 m y en la dirección y es de 2.00 m y el acero de refuerzo en ambas direcciones en la parte inferior de la zapata es fierro de ³/₄" de diámetro a 25 cm de separación (ver plano de cimentaciones).

8.4. Memoria de cálculo: Diseño de albañilería y elementos de confinamiento

1. Predimensionamiento

1.1. Espesor Efectivo de Muros "t" (Artículo 19)

El espesor efectivo mínimo, descontando tarrajeos, es $t \ge h/20$

$$t = \frac{250}{20} = 12.5 \approx 13 \ cm$$

Donde "h" es la altura libre entre los elementos de arriostre horizontales. Con lo cual, se utilizará muros en aparejo de soga con espesor efectivo igual a 13 cm (15 cm tarrajeado).

1.2. Densidad Mínima de Muros Reforzados (Artículo 25)

La densidad mínima de muros reforzados para la dirección "X", se determina con la expresión:

$$\frac{\text{\'A}rea~de~Corte~de~los~Muros~Reforzados}{\text{\'A}rea~de~la~Planta~T\'ipica} = \frac{\sum L.~t}{Ap} \geq \frac{Z.~U.~S.~N}{56}$$

Donde:

L = longitud total del muro incluyendo sus columnas (sólo intervienen muros con <math>L > 1.2 m)

t = espesor efectivo = 0.13 m.

Ap =área de la planta típica = 256.5 m2

Z = 0.45 el edificio está ubicado en la zona sísmica 4 (Norma E.030)

U = 1.0 el edificio es de uso común, destinado a vivienda (Norma E.030)

S = 1.05 el edificio está ubicado sobre suelo intermedio (Norma E.030)

N = 4 = número de pisos del edificio

$$\frac{\sum L.t}{Ap} \ge \frac{Z.U.S.N}{56} = \frac{0.45 \times 1 \times 1.05 \times 4}{56} = 0.03375$$

Área requerida = $Ap \times 0.03375 = 256.5 \times 0.0354 = 86568.75 \text{ cm}^2$

 $Para\ t = 13\ cm \rightarrow Logitud\ de\ muro\ requerido = 66.6\ m$

Sin embargo, se tiene placas de concreto ubicados en la escalera y el ascensor por lo que se considerará su aporte.

Longitud de placas de concreto de 9.4 m de 0.15 m de espesor.

$$\frac{E_c}{E_m} = \frac{217000}{32500} = 6.68$$

Contribución de área es:

$$\text{Á}rea = 940 \times (15 \times 6.68) = 94188 \ cm^2$$

Si bien es cierto que con la contribución de las placas se obtiene el área requerida, sin embargo, se procede a colocar albañilería de 13 cm de espesor por una longitud de 25.30 m a cada lado, sumando así un total de 50.6 m.

62

En la Tabla 8-32 se indica la longitud de los muros, su área de corte (Ac = Lt), el número de muros de iguales características (Nm) y además se verifica que la densidad de muros que presenta el edificio en la dirección X excede al valor mínimo reglamentario (0.03375).

Tabla 8-32. Densidad de Muros Reforzados

	Dirección X-X										
Muro	L (m)	t (m)	Ac (m2)	Nm							
X1	25.3	0.15	3.795	1							
X2	25.3	0.15	3.795	1							
X3	5.35	0.25	1.3375	1							
X4*	2.95	1.002	2.9559	1							
X5*	3.45	1.002	3.4569	1							
X6*	2.6	1.336	3.4736	1							
X7*	2.6	1.336	3.4736	1							
$\sum Ac \times \frac{Nm}{Ap} = \frac{22.2875}{256.5} = 0.0869$											

(*) Muros de concreto armado, se amplifica el espesor real por la relación de $\frac{E_C}{E_m}$ **Fuente: Elaboración propia**

1.3. Verificación del Esfuerzo Axial por Cargas de Gravedad

La resistencia admisible (Fa) a compresión en los muros de albañilería está dada por la expresión:

$$\sigma_m = \frac{P_m}{L.t}$$

$$\sigma_m = 0.2f'_m \left[1 - \left(\frac{h}{35t} \right)^2 \right]$$

$$\sigma_m = 0.15f'_m$$

Donde:

"Pm" es la carga de gravedad máxima de servicio, incluyendo el 100% de sobrecarga

"L" es la longitud total del muro (incluyendo el peralte de las columnas para el caso de los muros confinados).

$$\sigma_m = 0.2(650) \left[1 - \left(\frac{2.7}{35(0.15)} \right)^2 \right] = 92.62 \, Tn/m^2$$

$$\sigma_m = 0.15 f'_m = 0.15 * (650) = 97.5 Tn/m^2$$

El valor que no debe excederse es $92.62 Tn/m^2$

Revisando el muro X2, muro de 15 cm más esforzado y contemplando al 100% de sobrecarga, se tiene sobre una longitud unitaria de muro:

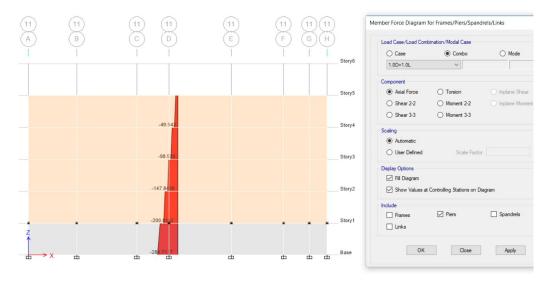


Figura 8-23. Muro de 15 cm más cargado

Carga axial total = Pm = 200.02 ton/m

Esta carga produce un esfuerzo axial máximo:

$$\sigma_m = \frac{P_m}{L.t} = \frac{200.02}{25.03 \times 0.15} = 52.7 \frac{Tn}{m^2} < 92.62 \frac{Tn}{m^2} : OK$$

En consecuencia, por carga vertical, es posible emplear muros en aparejo de soga (t = 15 cm) y una albañilería de calidad intermedia con f'm = 65 kg/cm2.

Revisando el muro X3, muro de 25 cm más esforzado y contemplando al 100% de sobrecarga, se tiene sobre una longitud unitaria de muro:

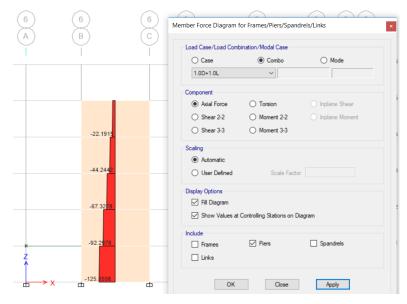


Figura 8-24. Muro de 25 cm más cargado

Carga axial total = Pm = 92.30 ton/m

Esta carga produce un esfuerzo axial máximo:

$$\sigma_m = \frac{P_m}{L.t} = \frac{92.30}{5.35 \times 0.25} = 69.01 \frac{Tn}{m^2} < 97.50 \frac{Tn}{m^2} : OK$$

En consecuencia, por carga vertical, es posible emplear muros en aparejo de cabeza (t = 25 cm) y una albañilería de calidad intermedia con f'm = 65 kg/cm2.

1.4. Peso Total del Edificio y Cargas Acumuladas

El peso obtenido en cada nivel del edificio, con 25% de sobrecarga para efectos sísmicos, es:

W4 = 172.95 Tn (azotea)

Wi = 220.60 Tn (piso típico, i = 1, 2, 3)

Peso total = $W4 + 3 \times Wi = 172.95 + 3 \times 220.60 = 834.75 \text{ Tn}$

Se elaboró la Tabla 8-33 correspondiente a las cargas verticales acumuladas en cada piso de cada muro: Pg = PD + 0.25 PL. En esta tabla además aparece el esfuerzo axial en los muros del primer piso: s1 = Pg / (L t).

A continuación, se determinan las cagas de gravedad acumuladas obtenidas del modelo de ETABS.

Tabla 8-33: Cargas de Gravedad Acumuladas del modelo en ETABS (ton): Pg = PD + 0.25PL

	Cargas de Gravedad Acumuladas (ton): Pg = PD + 0.25PL											
		Carga	arga por Nivel Cargas acumuladas Pg y esfuerzo axial en Piso									
Muro	L(m)	Azotea	Piso Tip.	Piso 4	Piso 3	Piso 2	Piso 1	s1(ton/m2)				
X1	25.30	19.667	39.26	39.333	78.597	117.399	159.018	41.90				
X2	25.30	20.429	40.79	40.858	81.652	121.958	165.041	50.18				
X3	5.35	8.713	17.78	17.425	35.203	53.788	73.856	55.22				
X4*	2.95	3.515	8.49	7.030	15.517	23.656	31.498	-				
X5*	3.45	3.915	10.93	7.830	18.756	29.272	40.249	-				
X6*	2.60	5.946	7.97	11.893	19.860	27.505	34.919	-				
X7*	2.60	6.750	8.02	13.501	21.516	29.875	38.278	-				

Fuente: Elaboración propia

2. Análisis ante el sismo moderado

Dada la regularidad del edificio, se hace un análisis estático ante las acciones del sismo moderado, modelando al edificio empleando el programa ETABS. De acuerdo a la Norma E.070, el sismo moderado se define como aquél que origina fuerzas de inercia iguales a la mitad de las correspondientes al sismo severo (donde R=3, según la Norma E.030), esto significa que para el sismo moderado puede emplearse un factor de reducción de las fuerzas sísmicas elásticas R=6.

2.1. Determinación de las Fuerzas de Inercia (Fi)

De acuerdo con la Norma E.030, la fuerza cortante en la base del edificio se calcula con la expresión:

$$V = \frac{Z.U.C.S}{R}.P$$

Z = 0.45 (edificio ubicado en la zona sísmica 4)

U = 1.0 (edificio de uso común, destinado a vivienda)

S = 1.05 (edificio ubicado sobre sobre suelo intermedio, tipo S2, con Tp = 0.6 s)

Tp = 0.6 s = período donde termina la plataforma plana del espectro sísmico.

TL=2.0 s

 $C = 2.5 (Tp / T) \le 2.5$; para $Tp > T A \rightarrow C = 2.5$

T = hm / 60 = 10.80 / 60 = 0.18 s = período natural de vibrar para edificios de muros portantes.

hm = altura total del edificio = 2.70x4 = 10.80 m

R = 6 (para sismo moderado)

P = 834.75 ton = peso total del edificio con 25% de sobrecarga (ver el acápite 1.4)

De este modo se obtiene para la dirección X:

$$V = \frac{Z.U.C.S}{R}.P$$

$$V = \frac{0.45 \times 1 \times 2.5 \times 1.05}{6} \times 834.75 = 164.34 Tn$$

Con este valor de cortante basal estática se notó que no era necesario escalar el espectro debido a que el cortante basal dinámico es superior del 80% del cortante basal estático (ver acápite 6 de la memoria de cálculo: Análisis sísmico).

Luego las fuerzas de inercia (Fi, tabla 8-34) se evalúan mediante la expresión de la Norma E.030:

$$F_i = \frac{W_i \times H_i}{\sum W_i \times H_i} \times V$$

Donde:

Wi = peso del nivel "i" (ver el acápite 1.4)

hi = altura del nivel "i" medida desde la base del edificio

En la tabla 8-21 se muestra además:

Vi = cortante en el entrepiso "i" por sismo moderado

VEi = cortante en el entrepiso "i" por sismo severo (el doble de Vi)

Tabla 8-34. Fuerzas de Inercia ante el Sismo Moderado "Fi"

	Fuerzas de Inercia ante el Sismo Moderado "Fi"											
Nivel hi (m)		Wi (Ton)	Wi x hi (Ton-	Sismo n	noderado	Sismo Severo						
MIVEI	111 (111)	WI (IOII)	m)	Fi (Ton)	Vi (Ton)	VEi=2Vi						
4	10.80	172.95	1867.86	56.41	56.41	112.82						
3	8.10	220.60	1786.86	53.96	110.38	220.75						
2	5.40	220.60	1191.24	35.98	146.35	292.70						
1	2.70	220.60	595.62	17.99	164.34	328.68						
		834.75	5441.58	164.34								

2.2. Fuerzas internas por sismo moderado

La nomenclatura que se emplea en este acápite es la de la Norma E.070:

- Ve = fuerza cortante (ton) producida por el sismo moderado
- Me = momento flector (ton-m) producido por el sismo moderado

Los valores Ve, Me obtenido del análisis elástico, en sus valores máximos para cada piso, aparecen en la tabla 8-35.

Tabla 8-35: Fuerzas Internas Ve (ton) y Me (ton-m) ante Sismo Moderado X-X

	Fuerzas Internas Ve (ton) y Me (ton-m) ante Sismo Moderado X-X											
Muro	Piso 1			Piso 2			Piso 3			Piso 4		
	Pg	Ve	Me	Pg	Ve	Me	Pg	Ve	Me	Pg	Ve	Me
X1	159.02	33.28	194.62	117.40	36.93	141.83	78.60	31.64	88.48	39.33	23.13	44.01
X2	165.04	40.31	208.88	121.96	46.31	171.43	81.65	39.67	114.63	40.86	28.81	58.30
X3	73.86	2.81	10.54	53.79	2.36	5.04	35.20	1.25	1.43	17.43	0.44	1.62
X4*	31.50	9.59	22.76	23.66	6.51	10.66	15.52	2.86	3.08	7.03	2.46	5.34
X5*	40.25	20.95	45.81	29.27	15.81	25.40	18.76	9.56	11.08	7.83	3.59	4.11
X6*	34.92	9.34	23.51	27.51	4.34	7.19	19.86	1.88	3.57	11.89	4.64	7.23
X7*	38.28	16.61	36.91	29.87	8.57	12.43	21.52	6.01	5.93	13.50	2.15	2.31

Fuente: Elaboración propia

Los muros X1 y X2 si bien es cierto son simétricos, sin embargo debido a la excentricidad accidental, presentan cortantes diferentes. Por ello se considera la cortante mayor.

3. Diseño por sismo moderado, resistencia al corte global, fuerzas internas ante el sismo severo y verificación del agrietamiento en pisos superiores.

3.1. Diseño por sismo moderado

$$V_e \leq 0.55 V_m = Fuerza \ Cortante \ Adminsible$$

Dónde: "Ve" es la fuerza cortante producida por el "sismo moderado" en el muro en análisis y "Vm" es la fuerza cortante asociada al agrietamiento diagonal de la albañilería.

$$V_m = 0.5v_m.\alpha.t.L + 0.23P_g$$

α es el factor de reducción de resistencia al corte por efectos de esbeltez, calculado

como:

$$\frac{1}{3} \le \alpha = \frac{L}{0.8H} = \le 1$$

Donde:

v_m = resistencia característica a corte de la albañilería

Pg = carga permanente y total de la edificación más un porcentaje de la carga viva de acuerdo a la RNE E.030 Diseño Sismorresistente.

t =espesor efectivo del muro (ver 3.13)

L = longitud total del muro (incluyendo a las columnas en el caso de muros confinados)

H = altura de entrepiso del muro

Para el muro de 25.3 m compuesto por X1.

$$\begin{aligned} V_e &= 24.40 \, Tn \\ \alpha &= \frac{25.3}{0.8 \, (2.7)} = 11.71 \, \rightarrow 1 \\ V_m &= 0.5(81).1. \, (0.15). \, (25.3) + 0.23(159.02) \\ V_m &= 190.27 \, Tn \\ V_e &= 33.28 \, \text{Tn} \leq 0.55 V_m = 104.65 \, Tn \, \therefore OK, No \, se \, fisura \end{aligned}$$

3.2. Diseño por sismo severo

Factor de amplificación para pasar a condición de sismo severo

$$2 \le \frac{V_{m1}}{V_{e1}} \le 3$$

Fuerza cortante última y momento flector último ante sismo severo

$$V_{ui} = V_{ei} \left(\frac{V_{m1}}{V_{e1}} \right), \quad M_{ui} = M_{ei} \left(\frac{V_{m1}}{V_{e1}} \right)$$

Cabe resaltar que el factor de amplificación de carga "Vm1/Ve1" se calcula sólo para el primer piso de cada muro.

- En edificios de hasta 4 pisos y cuando $\sum V_m$ en cada entrepiso sea mayor o igual a, 3 V_E se considerará que el edificio se comporta elásticamente. Bajo esta Condición, los elementos de confinamiento se diseñan con un refuerzo mínimo.
- Todo muro de un piso superior que tenga $\sum V_m > V_E$, se agrietará por corte, y se diseñará como un muro del primer piso. En esta expresión puede admitirse hasta 5% de error.

Tabla 8-36. Piso 1 Sismo en X-X

	Tubil 0 20, 1 iso 1 bishiro ch 12 12									
	Piso 1 Sismo en X-X									
				Me (Tn-		Vm	0.55			Mu(Tn-
Muro	L (m)	Pg (Tn)	Ve (Tn)	m)	α	(Tn)	Vm	Vm1/Ve1	Vu (Tn)	m)
X1	25.30	159.02	33.28	194.62	1.00	190.27	104.65	3.00	99.84	583.87
X2	25.30	165.04	40.31	208.88	1.00	191.66	105.41	3.00	120.93	626.64
Х3	5.35	73.86	2.81	10.54	1.00	71.16	39.14	3.00	8.42	31.63
X4*	2.95	31.50	9.59	22.76	1.00	27.19	14.95	2.83	27.19	64.50
X5*	3.45	40.25	20.95	45.81	1.00	31.80	17.49	2.00	41.89	91.63
X6*	2.60	34.92	9.34	23.51	1.00	31.95	17.57	3.00	28.01	70.52
X7*	2.60	38.28	16.61	36.91	1.00	31.95	17.57	2.00	33.22	73.82
·			•		XX	575.97	1.75			

(*) Muros de concreto armado.

Los muros del piso 1 no se agrietan por corte ante el sismo moderado (Ve < 0.55 Vm).

 $\sum V_{mx} = 575.97 \, Tn \geq V_E = 328.68 \, Tn \quad (R = 1.75) \, Resistencia \, global \, OK$

Tabla 8-37: Piso 2 Sismo en X-X

	Piso 2 Sismo en X-X									
			Ve	Me (Tn-		Vm	0.55		Vu	Mu(Tn-
Muro	L (m)	Pg (Tn)	(Tn)	m)	α	(Tn)	Vm	Vm1/Ve1	(Tn)	m)
X1	25.3	117.40	36.93	141.83	1.00	180.70	99.38	3.00	110.78	425.50
X2	25.3	121.96	46.31	171.43	1.00	181.75	99.96	3.00	138.93	514.28
Х3	5.35	53.79	2.36	5.04	1.00	66.54	36.60	3.00	7.08	15.13
X4*	2.95	23.66	6.51	10.66	1.00	27.19	14.95	2.83	18.44	30.21
X5*	3.45	29.27	15.81	25.40	1.00	31.80	17.49	2.00	31.62	50.79
X6*	2.6	27.51	4.34	7.19	1.00	31.95	17.57	3.00	13.01	21.57
X7*	2.6	29.87	8.57	12.43	1.00	31.95	17.57	2.00	17.14	24.86
				•	ΥY	551 87	1 80		•	

XX | 551.87 | 1.89 | Fuente: Elaboración propia

Los muros del piso 2 no se agrietan por corte ante el sismo moderado (Ve < 0.55 Vm).

 $\sum V_{mx} = 551.87 \, Tn \geq V_E = 292.70 \, Tn \quad (R = 1.89) \, Resistencia \, global \, OK$

Tabla 8-38: Piso 3 Sismo en X-X

	14014 0 30.1 150 3 5151110 CH 24 24									
Piso 3 Sismo en X-X										
			Ve	Me (Tn-		Vm	0.55		Vu	Mu(Tn-
Muro	L (m)	Pg (Tn)	(Tn)	m)	α	(Tn)	Vm	Vm1/Ve1	(Tn)	m)
X1	25.3	78.60	31.64	88.48	1.00	171.77	94.48	3.00	94.92	265.44
X2	25.3	81.65	39.67	114.63	1.00	172.48	94.86	3.00	119.00	343.89
Х3	5.35	35.20	1.25	1.43	1.00	62.27	34.25	3.00	3.76	4.28
X4*	2.95	15.52	2.86	3.08	1.00	27.19	14.95	2.83	8.11	8.74
X5*	3.45	18.76	9.56	11.08	1.00	31.80	17.49	2.00	19.13	22.15
X6*	2.6	19.86	1.88	3.57	1.00	31.95	17.57	3.00	5.65	10.72
X7*	2.6	21.52	6.01	5.93	1.00	31.95	17.57	2.00	12.02	11.86
			·		XX	529.40	2.40			

Fuente: Elaboración propia

Los muros del piso 3 no se agrietan por corte ante el sismo moderado (Ve < 0.55 Vm).

 $\sum V_{mx} = 529.40 \, Tn \geq V_E = 220.75 \, Tn \quad (R = 2.40) \, Resistencia \, global \, OK$

Tabla 8-39: Piso 4 Sismo en X-X

	Piso 4 Sismo en X-X									
			Ve	Me (Tn-		Vm	0.55		Vu	Mu(Tn-
Muro	L (m)	Pg (Tn)	(Tn)	m)	α	(Tn)	Vm	Vm1/Ve1	(Tn)	m)
X1	25.3	39.33	23.13	44.01	1.00	162.74	89.51	3.00	69.39	132.02
X2	25.3	40.86	28.81	58.30	1.00	163.09	89.70	3.00	86.44	174.89
Х3	5.35	17.43	0.44	1.62	1.00	58.18	32.00	3.00	1.33	4.86
X4*	2.95	7.03	2.46	5.34	1.00	27.19	14.95	2.83	6.97	15.14
X5*	3.45	7.83	3.59	4.11	1.00	31.80	17.49	2.00	7.18	8.23
X6*	2.6	11.89	4.64	7.23	1.00	31.95	17.57	3.00	13.92	21.68
X7*	2.6	13.50	2.15	2.31	1.00	31.95	17.57	2.00	4.30	4.63
-					vv	E06 00	4.40			

Elaboración propia [XX | 506.90 | 4.49]

Los muros del piso 4 no se agrietan por corte ante el sismo moderado (Ve < 0.55 Vm).

$$\sum V_{mx} = 506.90 \, Tn \geq V_E = 112.82 \, Tn \ (R = 4.49) \ R > 3 \ \therefore Refuerzo \, mínimo$$

4. Diseño de los elementos de confinamiento

El diseño de los elementos de confinamiento (vigas y columnas) ante fuerza sísmica en el plano, se realizará asumiendo que los muros son de sección rectangular (L.t).

4.1. Diseño de columnas

Las fuerzas internas en las columnas se obtendrán aplicando las expresiones de la Tabla 8-40.

Tabla 8-40. Fuerzas internas en columnas de confinamiento

FUERZAS INTERNAS EN COLUMNAS DE CONFINAMIENTO										
COLUMNA	V_c (fuerza cortante)	T (tracción)	C (compresión)							
Interior	$\frac{V_{m1}.L_m}{L(N_c+1)}$	$V_{m1} \frac{h}{L} - P_c$	$P_c - \frac{V_{m1}.h}{2L}$							
Extrema	$1.5 \frac{V_{m1}.L_m}{L(N_c + 1)}$	$F-P_c$	P_c+F							

Donde:

 $M = M_{u1} - 0.5 V_{u1} h$ ("h" es la altura del primer entrepiso)

F = M/L Fuerza axial en las columnas extremas producidas por "M".

Nc = número de columnas de confinamiento (en muros de un paño Nc=2)

Lm = longitud del paño mayor o ½ L, lo que sea mayor (m) (en muros de un paño Lm=L)

Pc = es la sumatoria de las cargas gravitacionales siguientes: carga vertical directa sobre la columna de confinamiento; mitad de la carga axial sobre el paño de muro a cada lado de la columna; y, carga proveniente de los muros transversales de acuerdo a su longitud tributaria.

Determinación de la sección de concreto de la columna de confinamiento

El área de la sección de las columnas será la mayor de las que proporcione el diseño por compresión o el diseño por corte fricción, pero no menor que 15 veces el espesor de la columna (15 t) en cm2.

Diseño por compresión

El área de la sección de concreto se calculará asumiendo que la columna está arriostrada en su longitud por el panel de albañilería al que confina y por los muros transversales de ser el caso. El área del núcleo (An) bordeado por los estribos se obtendrá mediante la expresión:

$$A_n = A_s + \frac{\frac{C}{\emptyset} - A_s f_y}{0.85 \,\delta \,f_c'}$$

Donde:

 $\emptyset = 0.7$ o 0,75, según se utilice estribos cerrados o zunchos, respectivamente.

 $\delta = 0.8$, para columnas sin muros transversales.

 $\delta = 1$, para columnas confinadas por muros transversales.

Diseño por corte-fricción (Vc)

La sección transversal (A_{cf}) de las columnas de confinamiento se diseñará para soportar la acción de corte fricción, con la expresión siguiente:

$$A_{cf} = \frac{V_c}{0.2f'_c \emptyset} \ge 15t \ (cm2)$$

Donde: $\emptyset = 0.85$

Determinación del refuerzo vertical

El refuerzo vertical a colocar en las columnas de confinamiento será capaz de soportar la acción combinada de corte-fricción y tracción; adicionalmente, desarrollará por lo menos una tracción igual a la capacidad resistente a tracción del concreto y como mínimo se colocarán 4 varillas para formar un núcleo confinado. El refuerzo vertical (A_s) será la suma del refuerzo requerido por corte-fricción (A_{sf}) y el refuerzo requerido por tracción (A_{st}) :

$$\begin{split} A_{sf} &= \frac{V_c}{f_y.\,\mu\phi} \\ A_{st} &= \frac{T}{f_y.\,\phi} \\ A_{sf} &= A_{sf} + A_{st} \geq \frac{0.1 f'_c A_c}{f_y} ... \left(\text{mínimo 4 } \phi 8mm\right) \end{split}$$

Dónde: El factor de reducción de resistencia es $\phi = 0.85$

El coeficiente de fricción es: $\mu = 0.8$ para juntas sin tratamiento $\mu = 1.0$ para juntas en la que se haya eliminado la lechada de cemento y sea intencionalmente rugosa.

Determinación de los estribos de confinamiento

Los estribos de las columnas de confinamiento podrán ser ya sea estribos cerrados con gancho a 135°, estribos de 1 ¾" de vuelta o zunchos con ganchos a 180°. En los extremos de las columnas, en una altura no menor de 450 mm o 1,5 d (por debajo o encima de la solera, dintel o sobrecimiento), deberá colocarse el menor de los siguientes espaciamientos (s) entre estribos:

$$s_1 = \frac{A_v \cdot f_v}{0.3f'_c (A_c / A_n - 1)}$$

$$s_2 = \frac{A_v \cdot f_v}{0.12t_n f'_c}$$

$$s_3 = \frac{d}{4} \ge 5cm$$

$$s_4 = 10cm$$

Donde "d" es el peralte de la columna, " t_n " es el espesor del núcleo confinado y " A_y " es la suma de las ramas paralelas del estribo.

El confinamiento mínimo con estribos será 6 mm, 1@50, 4@100, r@250 mm.
 Adicionalmente se agregará 2 estribos en la unión solera columna y estribos
 @ 100 mm en el sobrecimiento.

4.2. Diseño de vigas soleras correspondientes al primer nivel.

– La solera se diseñará a tracción pura para soportar una fuerza igual a T_s :

$$T_{s} = V_{m1} \frac{L_{m}}{2L}$$

$$A_{s} = \frac{T_{s}}{\emptyset f_{y}} \ge \frac{0.1 f'_{c} A_{cs}}{f_{y}} \dots (minimo: 4 \emptyset 8mm)$$

Donde:

 L_m =Longitud del paño mayor en un muro confinado, o 0.5L; lo que sea mayor.

L: Longitud total del muro

 $\emptyset = 0.9$

 A_{cs} = Área de la sección transversal de la solera

El área de la sección transversal de la solera (A_{cs}) será suficiente para alojar el refuerzo longitudinal (A_s) , pudiéndose emplear vigas chatas con un peralte igual al espesor de la losa del techo. En la solera se colocará estribos mínimos:

 \Box 6*mm*, 1 @ 5, 4@ 10, *r* @ 25 *cm*.

Fórmulas y Secuencia del Diseño de Columnas de Confinamiento:

- 1) Pg = PD + 0.25 PL = carga de gravedad acumulada (ton)
- 2) Vm = cortante de agrietamiento diagonal (ton)
- 3) Mu = momento flector ante sismo severo (ton-m)
- 4) L = longitud total del muro (m), incluyendo columnas de confinamiento.
- 5) $Lm = \text{longitud del paño mayor o } \frac{1}{2} L$, lo que sea mayor (m). En muros de 1 paño: Lm = L
- 6) Nc = número de columnas de confinamiento en el muro en análisis.
- 7) $M = Mu \frac{1}{2} Vm h (ton-m)$
- 8) F = M / L = fuerza axial producida por "M" en una columna extrema (ton)
- 9) Pc = Pg / Nc = carga axial producida por "Pg" en una columna (ton)
- 10) Pt = carga tributaria proveniente del muro transversal a la columna en análisis, puede emplearse: Pt = (Lt . Pg / L) del muro transversal (ton).
- 11) T = tracción en columna (ton): extrema: T = F Pc Pt

Interna:
$$T = Vm h / L - Pc - Pt$$

12) C = compresión en columna (ton): extrema: C = Pc + F

Interna:
$$C = Pc - \frac{1}{2}Vm h / L$$

13) Vc = cortante en columna (ton): extrema: Vc = 1.5 Vm Lm / (L (Nc + 1))

Interna:
$$Vc = Vm Lm / (L (Nc + 1))$$

- 14) $As = (T + Vc/\mu) / (f_y \cdot \phi) =$ área de acero vertical requerida (cm2, mín 4 ϕ 8 mm), usar $\phi = 0.85$.
- 15) As =área de acero vertical colocada (cm2)
- 16) δ =factor de confinamiento: $\delta=0.8$ para columnas sin muros transversales $\delta=1.0$ para columnas con muros transversales
- 17) $An = As + (C/\phi As f_y)/(0.85 \delta f'c) =$ área del núcleo de concreto (cm2), usar $\phi = 0.7$.
- 18) $Acf = Vc/0.2 f'c \Leftrightarrow 15t. Ac =$ área de la columna por corte-fricción (cm2), usar $\Leftrightarrow 0.85$
- 19) Dimensiones de la columna a emplear (cm x cm)
- 20) Ac =área de concreto de la columna definitiva (cm2)
- 21) An =área del núcleo de la columna definitiva (cm2)
- 22) As min = 0.1 f'c. Ac / f_v = área de acero vertical mínima (cm2), o 4 ϕ 8 mm
- 23) $s_1 = Av f_y / (0.3 t_n. f_y. (Ac/An 1)) =$ espaciamiento de estribos por compresión

(cm)

24)
$$s_2 = Av f_y / (0.12 t_n. f'c) =$$
espaciamiento de estribos por compresión (cm)

25)
$$s_3 = \frac{d}{4} \ge 5$$
 cm, lo que sea mayor = espaciamiento de estribos por compresión (cm)

- 26) $s_4 = 10 \ cm =$ espaciamiento máximo de estribos por compresión
- 27) Zona a confinar en los extremos de la columna: 45 cm o 1.5 d (cm)
- 28) s = espaciamiento a utilizar en la zona de confinamiento (cm)

Notas: - Estribaje mínimo: [] \$\phi\$ 6mm, 1 @ 5, 4 @ 10, r @ 25 cm

- En columnas L, T o irregular, usar d = Ac / t en los pasos 25 y 27.

Fórmulas y Secuencia del Diseño de vigas de Confinamiento:

- 29) $T_S = 0.5V_m L_m/L = \text{tracción en la solera (ton)}$
- 30) $A_s = T_s/\varphi f_y$ = área de acero horizontal requerida (cm2), usar φ =0.9.
- 31) $A_{smin} = 0.1 f'_{c} A_{cs} / f_{y}$
- 32) Acero longitudinal a usarse.

Notas: - Estribaje mínimo: [] \$\phi\$ 6mm, 1 @ 5, 4 @ 10, r @ 25 cm

Tabla 8-41: Fórmulas y Secuencia del Diseño de Columnas y Vigas de Confinamiento X-X

PISO 1 – DISEÑO DE LOS MUROS AGRIETADOS X-X						
MURO	X1 y	/ X2	X	X3		
Columna	Cce	Cci	Cce	Cci		
Ubicación	extrema	Interna	extrema	Interna		
1) Pg	165.	.041	73.3	856		
2) Vm	191.	.657	71.	156		
3) Mu	626.	.636	31.0	630		
4) L	25	300	5.3	350		
5) Lm	12.0	650	2.6	575		
6) Nc	11.0	000	3.000			
7) M	367.	.899	0.000			
8) F	14.:	541	0.000			
9) Pc		004	24.619			
L tributario	0.949	0.900	0.201	0.900		
10) Pt	0.000	0.000	0.000	0.000		
11) T	0.000	5.450	0.000	11.292		
12) C	29.545	4.777	24.619	6.663		
13) Vc	11.979	7.986	13.342	8.894		
Asf	4.194	2.796	4.671	3.114		
Ast	0.000	1.527	0.000	3.163		
14) As	4.194	4.323	4.671	6.277		
15) As real	5.160	5.160	8.000	8.000		
16) δ	0.800	0.800	0.800	0.800		

PISO 1 – DISEÑO DE LOS MUROS AGRIETADOS X-X							
MURO	X1 y	y X2	X3				
Columna	Cce	Cci	Cce	Cci			
Ubicación	extrema	Interna	extrema	Interna			
17) An	148.966	-98.816	18.989	-160.634			
18) Acf	335.534	223.689	373.716	249.144			
19) Usar	15x30	15x30	25x25	25x25			
20) Ac	450.000	450.000	625.000	625.000			
21) An	286.000	286.000	441.000	441.000			
22)Asmín	2.250	2.250	3.125	3.125			
# acero 1/2"	4 de 1/2"	4 de 1/2"	4 de 5/8"	4 de 5/8"			
As real	5.160	5.160	8.000	8.000			
estribos 6 mm	0.608	0.608	0.608	0.608			
23) s1	6.736	6.736	9.258	9.258			
24) s2	9.657	9.657	9.657	9.657			
25) s3	7.500	7.500	6.250	6.250			
26) s4	10.000	10.000	10.000	10.000			
27)zona c	45.000	45.000	45.000	45.000			
	9 @ 5	9 @ 5	9 @ 5	9 @ 5			
28) s[] ¹ / ₄ "	cm	cm	cm	cm			
	Vi	ga solera	T				
29) Ts	47.914	47.91425	17.789	17.789			
30) As	12.676	12.676	4.706	4.706			
An	300.000	300.000	500.000	500.000			
31) As min	1.500	1.500	2.500	2.500			
31) As a usar	12	12	5.16	5.16			
# acero ø	6 \ \ 5/8"	6 ¢ 5/8"	4 \ \ 1/2"	4 \ \ 1/2"			

Fuente: Elaboración propia

Se concluye que para los muros de 15 cm de espesor tanto para columnas extremas e internas el acero longitudinal será de 4 φ 1/2" con [] φ 6mm, 9 @ 5, 3 @ 10, r @ 25 cm.

Para las soleras de amarre el acero longitudinal será de $6 \phi 5/8$ " con [] ϕ 6mm, 1 @ 5, 4 @ 10, r @ 25 cm.

- Para el muro de 25 cm de espesor tanto para columnas extremas e internas el acero longitudinal será de 4 φ 5/8" con [] φ 6mm, 9 @ 5, 3 @ 10, r @ 25 cm.

Para las soleras de amarre el acero longitudinal será de $4 \phi 1/2$ " con [] ϕ 6mm, 1 @ 5, 4 @ 10, r @ 25 cm.

Por buenas prácticas de la ingeniería, se va replicar la distribución de acero en los 4 niveles.

9. Memoria de calidades y especificaciones de los materiales

1. Cemento

Según la norma E.060, el cemento utilizado será la que se consideró en la dosificación de materiales. El cemento hidráulico para utilizar será Portland Tipo 1 que cumpla con la norma ASTM C 150 y que viene en bolsas de 42.5 kg adecuadamente almacenados.

Almacenamiento

No se aceptarán bolsas de cemento con envolturas deterioradas o perforadas. Además, las bolsas de cemento en obra deberán ser almacenadas en un lugar techado, libre de humedad, sin contacto con el suelo. Las bolsas de cemento serán apiladas en máximo de 10 bolsas cubiertos con material de plástico.

2. Aditivos

Se permitirán el uso de plastificantes para aumentar la trabajabilidad del concreto. No se utilizarán aditivos que contengan cloruros como los acelerantes. La dosificación utilizada será correctamente sustentada considerando las características del producto que se encuentran en la ficha técnica.

Almacenamiento

El almacenamiento deberá ser de acuerdo con las recomendaciones del fabricante. Los aditivos líquidos serán protegidos de temperaturas de congelación y de cambios de temperatura que puedan afectar sus características. Los aditivos no deberán almacenarse más de 6 meses después de su verificación de calidad.

3. Agregados

Deberá ser piedra chancada

Tamaño Máximo Nominal

Para determinar el TMN se tomará en cuenta lo siguiente:

- a) 1/5 de la menor separación entre los lados del encofrado
- b) 1/3 de la altura de la losa
- c) 3/4 el espaciamiento mínimo libres entre las barras o alambres individuales de refuerzo, paquetes de barra.

Módulo de fineza

De la ficha técnica de los agregados se deberá verificar que el módulo de fineza de la arena deberá ser mayor a 2.3 y menor a 3.1 para asegurar una correcta proporción de agregado fino y grueso y cumplir con la norma ASTM C 125.

Límite granulométrico de la arena

Según lo especificado en la norma ASTM C 33, el agregado fino no debe contener más del 45% de material retenido entre cualquiera de dos tamices normalizados consecutivos. Deberá cumplirse con la siguiente tabla, donde se expresa los límites granulométricos.

Tabla 9-1: Límites granulométricos

Sieve (Specification E11)	Percent Passing
9.5-mm (3/a-in.)	100
4.75-mm (No. 4)	95 to 100
2.36-mm (No. 8)	80 to 100
1.18-mm (No. 16)	50 to 85
600-μm (No. 30)	25 to 60
300-μm (No. 50)	5 to 30
150-µm (No. 100)	0 to 10

Huso Granulométrico de la piedra chancada

Se verificará el Huso granulométrico de la piedra chancada de acuerdo con el Tamaño Máximo Nominal utilizado en el diseño de mezcla de concreto sea preparado en obra en concreto premezclado.

Almacenamiento

Se almacenarán de forma que se evite la segregación del agregado, estará cubierto con plástico y en un lugar adecuado para impedir la introducción de materiales orgánicos u otros afines.

4. Hormigón

Será procedente de cantera. Estará compuesta de partículas fuertes, duras, limpias y libres de partículas perjudiciales de polvo, materias orgánicas, etc. De granulometría uniforme, usándose lo retenido en la malla #100 y lo que pasa la malla 2.

5. Agua

Cumplirá las condiciones de la norma E.060, donde se indica que preferiblemente el agua utilizada para el mezclado de concreto sea potable. El agua no potable no podrá utilizarse en este proyecto.

6. Concreto

6.1.Concreto en estado fresco

Para verificar la trabajabilidad del concreto, se realizará el ensayo de Cono de Abrams de acuerdo con la norma ASTM C 143, los resultados de los ensayos en los diferentes vaciados deben estar en el rango de +1 y -1 de los siguientes asentamientos:

Tabla 9-2. Trabajabilidad del concreto en estado fresco

Elemento estructural	Slump (pulgadas)	Norma
Placas	4"	
Viga de cimentación	4"	Método de ensayo para
Sobrecimiento armado	4"	la medición del
Columnas	3 1/2"	asentamiento del
Vigas	3 1/2"	concreto de cemento
Viguetas y losa	3"	portland (ASTM C
Escalera	3"	143)
Vigas de confinamiento	4"	,
Columnas de confinamiento	4"	

Fuente: Elaboración propia

6.2. Concreto en estado endurecido

Para verificar la resistencia a compresión del concreto, se realizará el muestreo de concreto para elaborar probetas las mismas que deberán cumplir como mínimo con las siguientes resistencias.

Tabla 9-3. Resistencia f'c de elementos de concreto armado exigidos

Elemento estructural	f'c (kg/cm2)	Norma
Placas	280	Método de ensayo
Viga de cimentación	280	normalizado para la
Sobrecimiento armado	210	determinación de la
Columnas	280	resistencia a la
Vigas	210	compresión del
Viguetas y losa	210	concreto en muestras
Escalera	210	cilíndricas (ASTM C
Vigas de confinamiento	175	39)
Columnas de confinamiento	175	

Fuente: Elaboración propia

6.3.Transporte

En caso del concreto premezclado, se deberá indicar al operador el lugar adecuado para el vaciado de concreto y la altura de caída para evitar una

segregación del concreto.

6.4.Curado

El curado se realizará con agua potable. Se deberá mantener permanentemente húmedo todos los elementos de concreto por lo menos durante los primeros 7 dúas.

6.5.Encofrado y desencofrado

Los encofrados utilizados serán de madera y al momento del vertido de concreto, estos deberán tener menos de 50°C.

Tabla 9-4. Desencofrado de elementos

Elemento estructural	Días
Placas	1
Sobrecimiento armado	1
Columnas	1
Vigas	14
Viguetas y losa	14
Escalera	14
Vigas de confinamiento	7
Columnas de confinamiento	1

Fuente: Elaboración propia

7. Acero de refuerzo

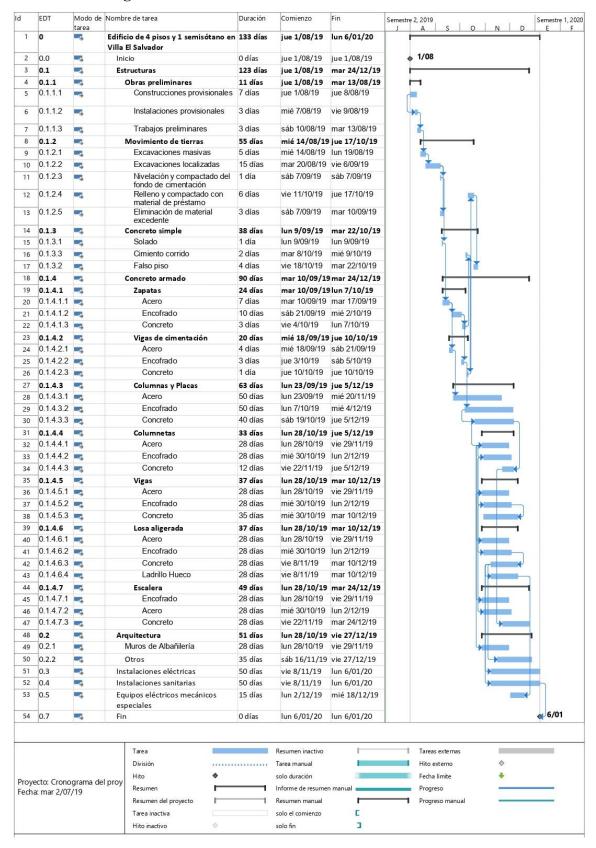
Se regirá de acuerdo con la norma E060 del 2009, donde indica que el acero de refuerzo será corrugado y de grado 60 para todos los elementos que requiera refuerzo de acero. Su correspondiente deformación unitaria es de 0.35%. El contratista deberá verificar que el material de acero tenga las mencionadas características.

Almacenamiento

Será almacenado en un lugar cerrado sobre parihuelas de madera de por lo menos 30 CM de alto. Serán almacenadas de forma ordenada, de acuerdo con su diámetro.

8. Juntas de construcción

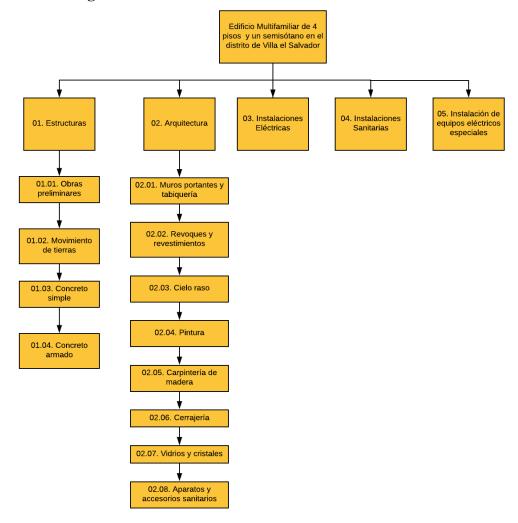
Se evitarán en lo posible las juntas de construcción. En caso sí haya; para muros,


placas y columnas deberán estar en la parte inferior de la losa o en la parte superior de la cimentación; para vigas y losas en la mitad de la luz. Las juntas deberán ser perpendiculares al acero de refuerzo principal.

9. Ladrillos de albañilería de muros portantes

De acuerdo con la norma E070, la unidad de ladrillo utilizada en los muros portantes será King Kong de 18 huecos con un porcentaje de vacíos mínimo de 30%.

10. Cronograma de ejecución


10.1. Diagrama de Gantt

10.2. Diagrama de Ruta Crítica

d	EDT	Modo de tarea	Nombi	re de tarea	Duración	Comienzo	Semestre 2, 2019 Semestre 3
1	0	-\$		io Multifamiliar de 4 pisos y u sótano en Villa El Salvador	n 133 días	jue 1/08/19	
2	0.0	-5	lni	cio	0 días	jue 1/08/19	♠ 1/08
3	0.1	- S		ructuras	123 días	jue 1/08/19	
4	0.1.1	-s		Obras preliminares	11 días	jue 1/08/19	
5	0.1.1.1	-5.		Construcciones provisionales		jue 1/08/19	
6	0.1.1.2	-5		Instalaciones provisionales	3 días	mié 7/08/19	
7	0.1.1.3	-s		Trabajos preliminares	3 días	sáb 10/08/19	
8	0.1.2	- <u>5</u>		Movimiento de tierras	55 días	mié 14/08/19	
9	0.1.2.1		'	Excavaciones masivas	5 días	mié 14/08/19	'
10	0.1.2.1			Excavaciones localizadas	15 días	mar 20/08/19	1 2
11	0.1.2.3			Nivelación y compactado del fondo de cimentación		sáb 7/09/19	
14	0.1.3	-5		Concreto simple	38 días	lun 9/09/19	
15	0.1.3.1			Solado	1 día	lun 9/09/19	† ' ·
18	0.1.4	- S		Concreto armado	90 días	mar 10/09/19	
19	0.1.4.1			Zapatas	24 días	mar 10/09/19	
20	0.1.4.1.1			Acero	7 días	mar 10/09/19	
21	0.1.4.1.2			Encofrado	10 días	sáb 21/09/19	
23	0.1.4.2			Vigas de cimentación	20 días	mié 18/09/19	
25	0.1.4.2.2			Encofrado	3 días	jue 3/10/19	!
27	0.1.4.3			Columnas y Placas	63 días	lun 23/09/19	
29	0.1.4.3	-		Encofrado	50 días	lun 7/10/19	
30	0.1.4.3.3	-		Concreto	40 días	sáb 19/10/19	
31	0.1.4.4			Columnetas	33 días	lun 28/10/19	
32	0.1.4.4			Acero	28 días	lun 28/10/19	
33	0.1.4.4.2	-		Encofrado	28 días	mié 30/10/19	
35	0.1.4.5				37 días		
37	0.1.4.5	-		Vigas Encofrado	28 días	lun 28/10/19 mié 30/10/19	
39	0.1.4.6	->			37 días	lun 28/10/19	
41	0.1.4.6.2			Losa aligerada Encofrado	28 días	mié 30/10/19	''
42	0.1.4.6.3			Concreto	28 días	vie 8/11/19	
51	0.3		Inc	talaciones eléctricas	50 días	vie 8/11/19	
52	0.4	7		talaciones sanitarias	50 días	vie 8/11/19	
54	0.7	->	Fin		0 días		6/01
54	0.7	->	FIN		U dias	lun 6/01/20	0,01
				Tarea		Resumen manual	
				División		solo el comienzo	С
				Hito •		solo fin	3
				Resumen	1	Tareas externas	
D	-1			Resumen del proyecto	1	Hito externo	♦
	royecto: Cronograma del proy echa: mar 2/07/19			Fecha límite	+		
ecna	. 111a1 Z/U/	/ 13		Hito inactivo		Tareas críticas	
				Resumen inactivo		División crítica	
				Tarea manual		Progreso	
				solo duración		Progreso manual	
						. rogreso manuai	
				Informe de resumen manual			

10.3. Diagrama WBS

10.4. Flujo de Caja

Para obtener la utilidad total del proyecto, se presenta inicialmente el cuadro de egresos:

Tabla 10-1. Flujo de caja de los egresos del proyecto.

Egresos del Proyecto	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	Enero
Porcentaje de avance		2.01%	3.96%	13.34%	42.71%	36.34%	1.65%
Mano de Obra		S/ 9,104.17	S/ 17,936.89	S/ 60,481.04	S/ 193,696.47	S/ 164,790.22	S/ 7,482.17
Materiales		S/ 9,559.70	S/ 18,834.36	S/ 63,507.21	S/ 203,388.07	S/ 173,035.49	S/ 7,856.54
Equipos		S/ 952.71	S/ 1,877.02	S/ 6,329.07	S/ 20,269.48	S/ 17,244.57	S/ 782.98
Subcontratos		S/ 7,097.99	S/ 13,984.33	S/ 47,153.50	S/ 151,013.69	S/ 128,477.19	S/ 5,833.41
Gastos generales		S/ 5,343.54	S/ 10,527.76	S/ 35,498.34	S/ 113,686.90	S/ 96,720.86	S/ 4,391.54
Total de egresos		S/ 32,058.11	S/ 63,160.35	S/ 212,969.16	S/ 682,054.62	S/ 580,268.33	S/ 26,346.64

Fuente: Elaboración propia

También se identifican los ingresos:

Tabla 10-2. Fluio de caja de los ingresos del proyecto

Tabla 10-2. Flujo de caja de los lligitesos del proyecto.									
Ingresos del Proyecto	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	Enero		
Anticipo del 15%	S/306,227.36								
Valorizaciones	S/ -	S/ 40,984.97	S/ 80,747.89	S/ 272,272.24	S/ 871,978.54	S/ 741,848.98	S/ 33,683.08		
Devolución de anticipo (3 meses)	S/ -	S/ -	S/ -	S/ -	S/ 102,075.79	S/ 102,075.79	S/ 102,075.79		
Total a Pago (con IGV)	S/306,227.36	S/ 40,984.97	S/ 80,747.89	S/ 272,272.24	S/ 769,902.76	S/ 639,773.20	-S/ 68,392.70		
Neto	S/259,514.71	S/ 34,733.02	S/ 68,430.41	S/ 230,739.18	S/ 652,459.96	S/ 542,180.68	-S/ 57,959.92		
IGV (18%)	S/ 55,120.92	S/ 7,377.29	S/ 14,534.62	S/ 49,009.00	S/ 138,582.50	S/ 115,159.18	-S/ 12,310.69		
Total de ingresos	S/259,514.71	S/ 34,733.02	S/ 68,430.41	S/ 230,739.18	S/ 652,459.96	S/ 542,180.68	-S/ 57,959.92		

Fuente: Elaboración propia

Finalmente, se presentan las utilidades obtenidas mes a mes. Se consideró un anticipo del 15% del presupuesto total que luego fue devuelto en 3 meses (ver Tabla 11-3).

Tabla 10-3. Utilidades del proyecto.

Resultados del proyecto	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre	Enero
Utilidad	S/259,514.71	S/ 2,674.91	S/ 5,270.06	S/ 17,770.02	-S/ 29,594.66	-S/ 38,087.65	-S/ 84,306.55
Utilidad acumulada	S/259,514.71	S/262,189.62	S/ 267,459.68	S/ 285,229.70	S/ 255,635.04	S/ 217,547.40	S/ 133,240.84

Fuente: Elaboración propia

11. Presupuesto y análisis de costos

En una obra civil, es primordial conocer el monto de ejecución, por ese motivo se realizan los presupuestos y análisis de costos, ya que es uno de los factores para determinar la viabilidad del proyecto. Para determinar el presupuesto y análisis de costos, primero es necesario contar con los metrados de las actividades a realizar, los metrados se presentan en el anexo 8.

El presupuesto y análisis de costo se realizó en el software S10 Presupuestos. El análisis de precios unitarios se realizó con las partidas preestablecidas en S10 y los costos de los recursos fueron obtenidos de la revista COSTOS Revista Especializada para la Construcción - Edición 299/abril – mayo 2019. Por otro lado, se debe acotar que para los subpresupuestos de instalaciones sanitarias, instalaciones eléctricas, y equipos eléctricos, mecánicos y especiales se consideraron como subcontratos y sus precios igualmente fueron obtenidos de la revista COSTOS - Edición 299/abril – mayo 2019.

11.1. Resumen de costos

Presupuesto 001 EDIFICIO MULTIFAMILIAR DE 4 PISOS Y 1 SÓTANO EN EL DISTRITO DE VILLA EL

SALVADOR

Subpresupuesto 001 ESTRUCTURA Y

ARQUITECTURA

Cliente UNIVERSIDAD SAN IGNACIO DE LOYOLA

Lugar LIMA - LIMA - VILLA EL SALVADOR Costo al 01/07/2019

Resumen de costos

Costos por sub presupuesto

ESTRUCTURAS 586,879.97
ARQUITECTURA 397,689.67
INSTALACIONES SANITARIAS 122,517.23
INSTALACIONES ELECTRICAS 97,059.60
EQUIPOS ELECTRICOS, MECANICOS Y ESPECIALES 126,698.18

Costos por

recursos

 MANO DE OBRA
 453,490.97

 MATERIALES
 476,181.37

 EQUIPOS
 47,455.83

 SUBCONTRATOS
 353,560.11

 COSTO DIRECTO
 1,330,844.65

GASTOS GENERALES 266,168.93 (20%) UTILIDADES 10% 133,084.47

SUBTOTAL 1,730,098.05 IMPUESTO (IGV 18%) 311,417.65

=======

TOTAL PRESUPUESTO 2,041,515.70

SON: DOS MILLONES CUARENTIUN MIL QUINIENTOS QUINCE Y 70/100 NUEVOS SOLES

Hoja de presupuesto 11.2.

Presupuesto

EDIFICIO MULTIFAMILIAR DE 4 PISOS Y 1 SÓTANO EN EL DISTRITO DE VILLA EL SALVADOR ESTRUCTURA Y ARQUITECTURA Presupuesto 001

Subpresupuesto 001

UNIVERSIDAD SAN IGNACIO DE LOYOLA Cliente Costo al 01/07/2019

Lugar LIMA - LIMA - VILLA EL SALVADOR

Item	Descripción	Und.	Metrado	Precio S/.	Parcial S/.
01	ESTRUCTURAS				586,879.97
01.01	OBRAS PRELIMINARES				18,612.98
01.01.01	CONSTRUCIONES PROVISIONALES				13,504.58
01.01.01.01	CONTENEDOR OFICINA	día	150.00	20.00	3,000.00
01.01.01.02	CONTENEDOR ALMACEN	día	150.00	15.46	2,319.00
01.01.01.03	COMEDOR PERSONAL OBRERO	glb	1.00	1,675.00	1,675.00
01.01.01.04	SERVICIOS HIGIENICOS DE OBRA (CONTENEDORES)	mes	5.00	747.00	3,735.00
01.01.01.05	CARTEL DE OBRA	und	1.00	974.26	974.26
01.01.01.06	CERCO DE OBRA CON POSTES DE MADERA Y TRIPLAY	m	12.00	150.11	1,801.32
01.01.02	INSTALACIONES ELÉCTRICAS Y AGUA				2,618.40
01.01.02.01	INSTALACION PROVISIONAL DE ENERGIA ELECTRICA	glb	1.00	918.75	918.75
01.01.02.02	INSTALACION PROVISIONAL DE AGUA	glb	1.00	1,699.65	1,699.65
01.01.03	TRABAJOS PRELIMINARES				2,490.00
01.01.03.01	LIMPIEZA DEL TERRENO CON EQUIPO	m2	375.00	1.18	442.50
01.01.03.02	TRAZO Y REPLANTEO INICAL	m2	375.00	5.46	2,047.50
01.02	MOVIMIENTO DE TIERRAS				43,258.71
01.02.01	EXCAVACION MASIVA CON EQUIPO PESADO	m3	428.40	14.82	6,348.89
01.02.02	EXCAVACION DE ZANJA CON EQUIPO (TERRENO SUAVE)	m3	177.00	14.88	2,633.76
01.02.03	NIVELACION INTERIOR APISONADO MANUAL	m2	118.13	2.85	336.67
01.02.04	RELLENO COMPACTADO CON MATERIAL DE PRESTAMO	m3	94.50	90.06	8,510.67
01.02.05	ELIMINACION DE MATERIAL EXCEDENTE DURANTE EL PROCESO CONSTRUCTIVO	m3	605.59	41.99	25,428.72
01.03	CONCRETO SIMPLE				16,746.23
01.03.01	SOLADOS CONCRETO f'c=100 kg/cm2 h=2"	m2	90.39	13.41	1,212.13
01.03.02	CIMIENTOS CORRIDOS MEZCLA 1:10 CEMENTO-HORMIGON 30% PIEDRA	m3	27.74	188.53	5,229.82
01.03.03	CONCRETO EN FALSOPISO MEZCLA 1:8 CEMENTO-HORMIGON E=4"	m2	378.00	27.26	10,304.28
01.04	CONCRETO ARMADO				508,262.05
01.04.01	ZAPATAS				29,067.68
01.04.01.01	CONCRETO PARA ZAPATAS fc=210 kg/cm2	m3	54.23	311.62	16,899.15
01.04.01.02	ENCOFRADO DE ZAPATAS	m2	103.02	44.83	4,618.39
01.04.01.03	ACERO fy=4200 kg/cm2 GRADO 60 en ZAPATAS	kg	1,634.23	4.62	7,550.14
01.04.02	VIGA DE CIMENTACION				11,147.77
01.04.02.01	CONCRETO EN VIGAS DE CIMENTACION f'c=210 kg/cm2	m3	9.24	318.10	2,939.24
01.04.02.02	ENCOFRADO DE VIGAS DE CIMENTACION	m2	73.91	56.48	4,174.44
01.04.02.03	ACERO fy=4200 kg/cm2 GRADO 60 en VIGAS DE CIMENTACION	kg	873.18	4.62	4,034.09
01.04.03	COLUMNAS Y PLACAS				242,566.18
01.04.03.01	CONCRETO EN COLUMNAS fc=210 kg/cm2	m3	145.39	408.29	59,361.28
01.04.03.02	ENCOFRADO Y DESENCOFRADO NORMAL EN COLUMNAS	m2	1,568.29	73.53	115,316.36
01.04.03.03	ACERO fy=4200 kg/cm2 GRADO 60 en COLUMNAS	kg	14,694.49	4.62	67,888.54
01.04.04	COLUMNETAS				26,560.93
01.04.04.01	CONCRETO EN COLUMNAS fc=210 kg/cm2	m3	9.20	408.29	3,756.27
01.04.04.02	ENCOFRADO Y DESENCOFRADO NORMAL EN COLUMNAS	m2	230.00	73.53	16,911.90

01.04.04.03	ACERO fy=4200 kg/cm2 GRADO 60 en COLUMNAS	kg	1,275.49	4.62	5,892.76
01.04.05	VIGAS	•		000.40	63,373.66
01.04.05.01	CONCRETO EN VIGAS fc=210 kg/cm2	m3	55.48	302.46	16,780.48
01.04.05.02	ENCOFRADO Y DESENCOFRADO NORMAL EN VIGAS	m2	94.38	100.81	9,514.45
01.04.05.03	ACERO fy=4200 kg/cm2 GRADO 60 en VIGAS	kg	8,025.70	4.62	37,078.73
01.04.06	LOSAS ALIGERADAS				125,272.25
01.04.06.01	CONCRETO EN LOSAS ALIGERADAS fc=210 kg/cm2	m3	91.02	345.48	31,445.59
01.04.06.02	ENCOFRADO Y DESENCOFRADO NORMAL EN LOSAS ALIGERADAS	m2	1,040.19	67.41	70,119.21
01.04.06.03	ACERO fy=4200 kg/cm2 GRADO 60 en LOSAS ALIGERADAS	kg	923.69	4.62	4,267.45
01.04.06.04	LADRILLO HUECO DE ARCILLA h=15 cm PARA TECHO ALIGERADO	pza	9,000.00	2.16	19,440.00
01.04.07	ESCALERAS				10,273.58
01.04.07.01	CONCRETO EN ESCALERAS fc=210 kg/cm2	m3	8.43	345.48	2,912.40
01.04.07.02 01.04.07.03	ENCOFRADO Y DESENCOFRADO NORMAL EN ESCALERAS	m2	54.12 534.24	90.41 4.62	4,892.99
01.04.07.03	ACERO fy=4200 kg/cm2 GRADO 60 en ESCALERAS	kg	334.24	4.02	2,468.19
02.01	ARQUITECTURA				397,689.67
	MUROS PORTANTES Y TABIQUERIA	O	47.50	115.63	65,158.31
02.01.01	MURO LADRILLO K.K DE ARCILLA 18H (09x013x0.24) AMARRE DE CABEZA,JUNTA 1.5 cm.MORTERO 1:1:5	m2	47.50	115.63	5,492.43
02.01.02	MURO LADRILLO K.K.DE ARCILLA 18 H (0.09x0.13x0.24) AMARRE DE SOGA JUNTA 1.5 cm. MORTERO 1:1:5	m2	521.95	68.41	35,706.60
02.01.03	MURO DE LADRILLO PANDERETA (0.10x0.12x0.24) AMARRE CANTO MORTERO 1:5 JUNTA 1.5 cm.	m2	432.40	55.41	23,959.28
02.02	REVOQUES ENLUCIDOS Y MOLDURAS				49,048.49
02.02.01	TARRAJEO DE MUROS INTERIORES	m2	1,434.25	26.46	37,950.26
02.02.02	TARRAJEO DE MUROS EXTERIORES	m2	286.85	38.69	11,098.23
02.03	CIELORRASOS				38,164.57
02.03.01	TARRAJEO DE CIELORASO	m2	1,040.19	36.69	38,164.57
02.04	PISOS Y PAVIMENTOS				113,411.91
02.04.01	CONTRAPISO DE 2"	m2	1,040.19	27.96	29,083.71
02.04.02	PISO DE LOSETA VENECIANA 40x40 cm	m2	1,040.19	81.07	84,328.20
02.05	PINTURA				32,778.60
02.05.01	PINTURA LATEX EN CIELO RASO	m2	1,040.19	11.69	12,159.82
02.05.02	PINTURA LATEX EN MUROS INTERIORES	m2	1,434.25	11.54	16,551.25
02.05.03	PINTURA LATEX EN MUROS EXTERIORES	m2	286.85	14.18	4,067.53
02.06	CARPINTERIA DE MADERA				57,301.20
02.06.01	PUERTAS DE MADERA TABLEROS REBAJADOS DE 4.5 mm DE CEDRO	m2	16.80	559.99	9,407.83
02.06.02	PUERTA CONTRAPLACADA 35 mm CON TRIPLAY 4 mm INCLUYE MARCO CEDRO 2"X3"	m2	117.60	273.84	32,203.58
02.06.03	VENTANA CON HOJAS DE MADERA CEDRO	m2	95.13	164.93	15,689.79
02.07	CERRAJERIA				9,734.88
02.07.01	BISAGRAS CAPUCHINA ALUMINIZADA DE 3 1/2 X 3 1/2"	und	320.00	13.38	4,281.60
02.07.02	CERRADURA PARA PUERTA INGRESO	und	8.00	149.49	1,195.92
02.07.03	CERRADURA PARA PUERTA INTERIORES	und	72.00	59.13	4,257.36
02.08	VIDRIOS, CRISTALES Y SIMILARES				17,765.15
02.08.01	VIDRIO SEMIDOBLE INCOLORO CRUDO	m2	330.33	53.78	17,765.15
02.09	ACCESORIOS SANITARIOS				14,326.56
02.09.01	INODORO ONE PIECE BLANCO	und	32.00	144.79	4,633.28
02.09.02	LAVATORIO PEDESTAL BLANCO	und	32.00	204.80	6,553.60
02.09.03	DUCHA CROMADA DE CABEZA GIRATORIA Y LLAVE MEZCLADORA	und	16.00	88.17	1,410.72
02.09.04	TOALLERO DE LOSA BLANCO	und	16.00	33.79	540.64
02.09.05	PAPELERA LOSA BLANCO	und	32.00	25.39	812.48
02.09.06	JABONERA LOSA BLANCO	und	16.00	23.49	375.84
03	INSTALACIONES SANITARIAS				122,517.23

03.01	SC INSTALACIONES SANITARIAS	glb	1.00	122,517.23	122,517.23
04	INSTALACIONES ELECTRICAS				97,059.60
04.01	SC INSTALACIONES ELECTRICAS	glb	1.00	97,059.60	97,059.60
05	EQUIPOS ELCTRICOS, MECANICOS Y ESPECIALES				126,698.18
05.01	ASCENSORES (suministro - colocación)	glb	1.00	126,698.18	126,698.18
	COSTO DIRECTO				1,330,844.65
	GATOS GENERALES (20%)				266,168.93
	UTILIDADES 10%				133,084.47
	SUBTOTAL				1,730,098.05
	IMPUESTO (IGV 18%)				311,417.65
					=======
	TOTAL PRESUPUESTO				2,041,515.70

SON: DOS MILLONES CUARENTIUN MIL QUINIENTOS QUINCE Y 70/100 NUEVOS SOLES

11.3. Análisis de precios unitarios

El análisis de precios unitarios se presenta en el Anexo 9.

11.4. Listado de insumos

0102007

Obra

Precios y cantidades de recursos requeridos por tipo

EDIFICIO MULTIFAMILIAR DE 4 PISOS Y 1 SÓTANO

		EN EL DISTRITO D	E VILLA EL SALVADOR		
Subpresupuesto	001	ESTRUCTURA Y A	RQUITECTURA		
Fecha	01/07/2019				
Lugar	150142	LIMA - LIMA - VILL	A EL SALVADOR		
Código	Recurso	Unidad	Cantidad	Precio S/.	Parcial S/.
	MANO	DE OBRA			
		-			
0101010002	CAPATAZ	hh	979.9783	26.23	25,704.83
0101010003	OPERARIO	hh	10,042.0147	21.86	219,518.44
0101010004	OFICIAL	hh	2,402.7818	17.51	42,072.71
0101010005	PEON	hh	9,841.3574	15.78	155,296.62
01010100060002	OPERADOR DE EQUIPO LIVIANO	hh	467.0157	22.61	10,559.22
01010300000005	OPERARIO TOPOGRAFO	hh	15.0000	22.61	339.15
					453,490.97
	MATE	RIALES			
0201030001	GASOLINA	gal	56.0469	9.69	543.09
0201040001	PETROLEO D-2	gal	158.1955	7.20	1,139.01
02040100010001	ALAMBRE NEGRO RECOCIDO N° 8	kg	659.4087	2.96	1,951.85
02040100010002	ALAMBRE NEGRO RECOCIDO Nº 16	kg	838.8277	2.96	2,482.93
0204030001	ACERO CORRUGADO fy = 4200 kg/cm2 GRADO 60	kg	29,998.8728	2.83	84,896.81
02040600010016	ACERO LISO EN VARILLAS DE 1/4"	kg	531.8520	2.83	1,505.14
02041200010001	CLAVOS PARA MADERA CON CABEZA DE 1"	kg	8.9924	3.49	31.38
02041200010003	CLAVOS PARA MADERA CON CABEZA DE 2"	kg	4.2550	3.49	14.85
02041200010005	CLAVOS PARA MADERA CON CABEZA DE 3"	kg	385.5386	3.49	1,345.53
02041200010007	CLAVOS PARA MADERA CON CABEZA DE 4"	kg	279.5215	3.49	975.53
02050100010004	TUBERIA PVC-SAP ELECTRICA DE 1" X 3 m (25 mm)	und	10.0000	8.05	80.50
02070100010002	PIEDRA CHANCADA 1/2"	m3	329.7435	54.15	17,855.61
0207010006	PIEDRA GRANDE DE 8"	m3	13.8700	43.46	602.79
0207020001	ARENA	m3	0.5180	42.37	21.95
02070200010002	ARENA GRUESA	m3	392.5416	38.42	15,081.45
0207030001	HORMIGON	m3	74.9806	43.58	3,267.65

02070400010006	MATERIAL GRANULAR PARA RELLENO	m3	122.8500	50.80	6,240.78
0207070001	AGUA PUESTA EN OBRA	m3	135.6126	2.10	284.79
0213010001	CEMENTO PORTLAND TIPO I (42.5 kg)	bol	5,280.0628	17.37	91,714.69
02130200020004	CAL HIDRATADA BOLSA 30 kg	bol	115.5445	12.63	1,459.33
	g .				
02130400010001	TIZA BOLSA DE 40 kg	und	7.5000	18.56	139.20
02130600010001	OCRE ROJO	kg	3.7500	4.60	17.25
02160100010001	LADRILLO KK 18 HUECOS 9X13X24 cm	mll	24.6360	510.00	12,564.36
02160100040005	LADRILLO PARA TECHO 8H DE 15X30X30 cm	und	9,090.0000	1.61	14,634.90
	LADRILLO PANDERETA 10X12X24 cm	mll	13.8368	420.00	5,811.46
					,
02190800010005	ESCANTILLON DE CONCRETO 0.05x0.05x0.40 m	und	245.3880	1.30	319.00
02221100010001	COLA SINTETICA	gal	27.5436	30.08	828.51
0228080001	LOSETA VENECIANA 40x40 mm	m2	1,092.1995	29.58	32,307.26
0231010001	MADERA TORNILLO	p2	17,571.6707	5.80	101,915.69
0231020001	MADERA CEDRO		,	9.75	25,585.77
		p2	2,624.1815		,
02310500010001	TRIPLAY LUPUNA 4 x 8 x 4 mm	pln	124.6560	19.70	2,455.72
02310500010006	TRIPLAY DE 1.20X2.40 m X 4 mm	und	9.9996	48.22	482.18
0231190001	MADERA PINO	p2	3.5439	2.75	9.75
02370300010002	CERRADURA SCHLAGE ORBIT SERIE "A" EXTERIOR	und	8.0000	122.37	978.96
02370600010002				5.09	1.628.80
	BISAGRA CAPUCHINA ALUMINIZADA 3 1/2"x3 1/2"	und	320.0000		,
02370800010004	CERRADURA GEO PUERTA INTERIOR Y DORMITORIO	und	72.0000	38.40	2,764.80
0238010001	LIJA PARA MADERA	plg	7.2000	1.82	13.10
02380100010001	LIJA PARA MADERA #100	plg	75.5549	1.82	137.51
					1.449.68
0238010004	LIJA PARA PARED	plg	690.3225	2.10	,
0240010001	PINTURA LATEX	gal	2.3988	22.03	52.85
0240010008	PINTURA LATEX SUPERMATE	gal	23.8946	58.47	1,397.12
0240010011	PINTURA LATEX LAVABLE	gal	206.1209	58.47	12,051.89
0240020001	PINTURA ESMALTE	- ·	1.8750	32.91	61.71
		gal			
02401500010004	IMPRIMANTE	kg	170.6901	0.69	117.78
02401500020001	SELLADOR A BASE DE LATEX	gal	1.4400	55.08	79.32
0241030001	CINTA TEFLON	und	4.0000	1.32	5.28
0243120001	VIDRIO TRANSPARENTE CRUDO MEDIO DOBLE	m2	346.8465	47.50	16,475.21
02460100020002	DESAGUE AUTOMATICO P/LAVATORIO	und	32.0000	12.72	407.04
02460300010001	TUBO DE ABASTO 1/2"	und	64.0000	12.72	814.08
02460300010002	TUBO DE ABASTO 5/8"	und	32.0000	12.72	407.04
02460400010003	UÑAS DE SUJECION PARA LAVATORIO	und	32.0000	7.53	240.96
02460700010003	PERNOS DE ANCLAJE DE FIERRO GALVANIZADO	und	64.0000	2.51	160.64
	CON CAPUCHON PLASTICO				
02460800010003	TRAMPA P CROMADA P/LAVAT. 1 1/4"	und	32.0000	11.87	379.84
02461100010002	PAPELERA DE LOZA BLANCA	und	32.0000	5.80	185.60
0246140001	ANILLO DE CERA PARA INODORO	und	32.0000	2.40	76.80
02461500010001	TOALLERO DE LOSA BLANCA CON BARRA PLASTICA	und	16.0000	14.20	227.20
02462200010004	JABONERA DE LOZA BLANCA C/ASA	und	16.0000	3.90	62.40
02462400010001	ASIENTO MELAMINE PESADO	und	32.0000	16.40	524.80
	LAVATORIO NACIONAL MANANTIAL		32.0000	29.58	946.56
		und			
	INODORO NACIONAL ONE PIECE COLOR BLANCO	und	32.0000	69.07	2,210.24
02471700010001	PEDESTAL NACIONAL MANANTIAL	und	32.0000	31.95	1,022.40
02560100010003	MEZCLADORA PARA LAVATORIO (VAINSA)	und	32.0000	46.53	1,488.96
02560300010001	DUCHA GIRATORIA BRAZO Y CANOPLA 2 LLAVES	und	16.0000	62.63	1,002.08
02681000010013	CAJA CUADRADA DE FIERRO GALVANIZADO 150 X	und	3.0000	18.40	55.20
02001000010013	150 X100 mm	unu	3.0000	10.40	55.20
0270010037	CABLE N° 10 AWG	rll	0.5000	195.68	97.84
0270010039	CABLE N° 14 AWG	rll	1.0000	82.97	82.97
0276030004	SEPARADORES PLASTICOS (3 cm.) EN FIERRO DE VIGAS	mll	0.2454	32.60	8.00
					476,181.37
	EQUII	POS			
0301000002	NIVEL TOPOGRAFICO	día	1.8750	150.00	281.25
03010000110001	TEODOLITO	día	1.8750	150.00	281.25
0301010006	HERRAMIENTAS MANUALES	%mo			11,760.49
03010600020001	REGLA DE ALUMINIO 1" X 4" X 8"	und	1.0841	34.20	37.08
000 10000020001		unu	1.00+1	J4.20	31.00
03010600000000		und	2 0004	24.00	74 45
	REGLA DE ALUMINIO 1½" X 4" X 10"	und	2.0804	34.20	71.15
03010600020005	REGLA DE ALUMINIO 1½" X 4" X 10" REGLA DE ALUMINIO DE DIFERENTES MEDIDAS	und	5.5223	30.25	167.05
03010600020005	REGLA DE ALUMINIO 1½" X 4" X 10"				

0301080001	CEPILLADORA ELECTRICA	hm	64.9320	14.60	948.01
03010800030002	SIERRA CIRCULAR	hm	45.9060	7.59	348.43
0301100003	COMPACTADORA DE PLANCHA	día	5.2975	10.59	56.10
03011600010002	CARGADOR FRONTAL CAT-930	hm	16.3295	177.97	2,906.16
03011700020004	RETROEXCAVADORA CASE 580C	hm	14.1600	169.49	2,399.98
03011700020005	RETROEXCAVADORA CASE 590 SK	hm	34.2720	169.49	5,808.76
03012000010002	MOTONIVELADORA FIAT FG-85A	hm	2.5125	159.49	400.72
03012100030001	WINCHE ELECTRICO 3.6 HP DE DOS BALDES	hm	131.4788	12.72	1,672.41
03012900010002	VIBRADOR DE CONCRETO 4 HP 1.25"	hm	175.4752	12.71	2,230.29
0301290003	MEZCLADORA DE CONCRETO	hm	0.1284	16.95	2.18
03012900030001	MEZCLADORA DE CONCRETO 11 P3 (23 HP)	hm	296.3934	16.95	5,023.87
0301340001	ANDAMIO METALICO	día	79.4271	16.50	1,310.55
03013500010006	CONTENEDOR DE INODOROS Y LAVATORIOS	día	150.0000	12.45	1,867.50
03013500010007	CONTENEDOR DE DUCHAS	día	150.0000	12.45	1,867.50
03013500010008	CONTENEDOR DE ALMACENES	día	150.0000	15.46	2,319.00
03013500010009	CONTENEDOR DE OFICINAS	día	150.0000	20.00	3,000.00
03013500020001	COMEDOR OBREROS	glb	1.0000	1,675.00	1,675.00
03014900010001	CORDEL	rll	0.5625	4.62	2.60
0305010001	CARTEL DE OBRA	und	1.0000	974.26	974.26
					47,455.83
	SUBCON	TRATOS			
0403030001	SC ELIMINACION DE MATERIAL EXCEDENTE CON	m3	611.5900	11.57	7,076.10
	VOLQUETES				
0410010006	SC PORTON DE OBRA (4.00x2.50 m.)	und	0.0396	1,423.20	56.36
04130100010002	SC DE PINTURA LATEX EN MUROS INTERIORES (DOS MANOS)	m2	28.8000	5.30	152.64
0416010004	SC DE INSTALACIONES ELECTRICAS	glb	1.0000	97,059.60	97,059.60
0416010005	SC DE INSTALACIONES SANITARIAS	glb	1.0000	122,517.23	122,517.23
0419010001	SC ASCENSOR	und	1.0000	126,698.18	126,698.18
				.,	•
					353,560.11
				Total S/.	1,330,688.28

11.5. Fórmula polinómica

Fórmula Polinómica

Presupuesto 0102007 EDIFICIO MULTIFAMILIAR DE 4 PISOS Y 1 SÓTANO EN EL DISTRITO DE VILLA EL

SALVADOR

Subpresupuesto 001 ESTRUCTURA Y ARQUITECTURA

Fecha Presupuesto 01/07/2019
Moneda NUEVOS SOLES

Ubicación Geográfica 150142 LIMA - LIMA - VILLA EL SALVADOR

 $K = 0.263^{\circ}(Jr / Jo) + 0.053^{\circ}(CMr / CMo) + 0.054^{\circ}(Ar / Ao) + 0.063^{\circ}(AGr / AGo) + 0.237^{\circ}(Dr / Do) + 0.099^{\circ}(MQr / MQo) + 0.231^{\circ}(GGUr / GGUo)$

Monomio	Factor	(%) Símbolo	Indice	Descripción
1	0.263	100.000 J	47	MANO DE OBRA INC. LEYES SOCIALES
2	0.053	100.000 CM	21	CEMENTO PORTLAND TIPO I
3	0.054	100.000 A	03	ACERO DE CONSTRUCCION CORRUGADO
4	0.063	100.000 AG	05	AGREGADO GRUESO
5	0.237	100.000 D	29	DOLAR
6	0.099	75.758 MQ	43	MADERA NACIONAL PARA ENCOF. Y CARPINT.
	0.099	24.242	48	MAQUINARIA Y EQUIPO NACIONAL
7	0.231	100.000 GGU	39	INDICE GENERAL DE PRECIOS AL CONSUMIDOR

12. Plan de control de calidad y seguridad en obra

En esta sección se ha estipulado en dos partes:

12.1. Control de calidad en obra

Durante la dirección del proyecto se deben establecer los siguientes controles de calidad:

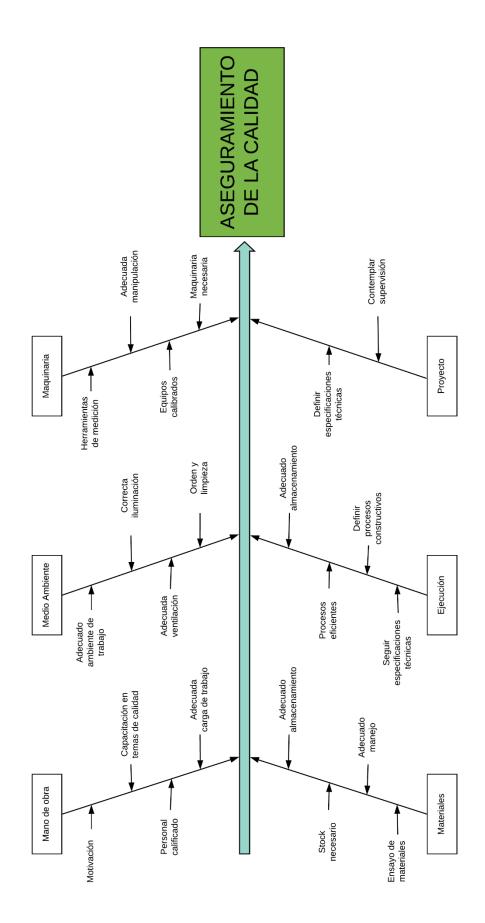
12.1.1. Control de calidad en la recepción en obra de materiales, equipos y sistemas.

Tiene por finalidad comprobar que los materiales, equipos y sistemas que llegan a obra cumplan con lo siguiente:

Para productos y materiales, estos deberán contemplar marcas, sellos, certificaciones de conformidad u otros distintivos de calidad voluntarios que faciliten el cumplimiento de las exigencias del proyecto.

Para equipos y sistemas, deben asegurar las características técnicas, mediante fichas técnicas del equipo y fichas de mantenimiento si es el caso.

Para algunos productos o materiales como son los agregados, deberán someterse a ensayo para así verificar su cumplimiento. Estos ensayos se realizarán de acuerdo con la normativa vigente. (Arquitea, 2019)


12.1.2. Control de calidad en la ejecución de la obra

Durante la construcción, para alcanzar el nivel de calidad previsto se deben llevar a cabo y cumplir con las especificaciones técnicas de cada una de las partidas detalladas.

En términos generales, durante la ejecución de la obra se controlará la ejecución de cada unidad de obra verificando su replanteo, los materiales que se utilicen, la correcta ejecución y disposición de los elementos constructivos y de las instalaciones. (Arquitea, 2019)

12.1.3. Control de calidad de obra terminada

El control de calidad de obra terminada se realiza, bien sobre el edificio en su conjunto, o bien sobre sus diferentes partes y sus instalaciones, parcial o totalmente terminadas con el fin de dar conformidad al trabajo concluido tal como lo establece el proyecto. (Arquitea, 2019). A continuación, se presenta un gráfico de Causa-Efecto para alcanzar el aseguramiento de la calidad de manera global.

Fuente: elaboración propia

12.2. Seguridad en obra

Para el plan de seguridad en obra se debe cumplir con la Norma G.050, Seguridad Durante la Construcción y la Ley N° 29783, Ley de Seguridad y Salud en el Trabajo. Como mínimo se debe establecer lo siguiente:

12.2.1. Matriz de Identificación de Peligros, Evaluación de Riesgos y Determinación de Controles – IPERC.

Se debe establecer una matriz de identificación de peligros, evaluación de riesgos y determinación de controles para cada una de las actividades que se van a ejecutar, con el fin de tomar las medidas de control.

En el Anexo 6 se adjunta un modelo de matriz IPERC para la actividad de vaciado de concreto de la losa aligerada.

12.2.2. Matriz Estándar de Equipos de Protección Individual

En dicha matriz se identifica el peligro su respectivo equipo de protección individual (EPI/EPP) el cual reduce el riesgo, la especificación técnica del EPP, para el tipo de trabajo que se utiliza, además el respectivo rotulado tanto de advertencia como de obligación de uso del EPP.

En el Anexo 6 se adjunta un modelo de Matriz Estándar de Equipos de Protección Individual.

12.2.3. Análisis de Trabajo Seguro - ATS

En el mismo lugar de trabajo y con los propios trabajadores se debe identificar los peligros a los que están expuestos al realizar su labor diaria. Tiene como objetivo disminuir o eliminar el riesgo a sufrir accidentes.

Por otro lado, se deben realizar charlas diarias de 5 minutos para capacitar a los trabajadores a cerca de cada una de las matrices antes mencionadas.

Además, en el lugar de trabajo se debe establecer el mapeo de riesgos y la colocación de las señaléticas respectivas.

13. Plan de gestión ambiental

El plan de gestión ambiental está dividido en tres principales procesos que se pueden observar en la siguiente figura.

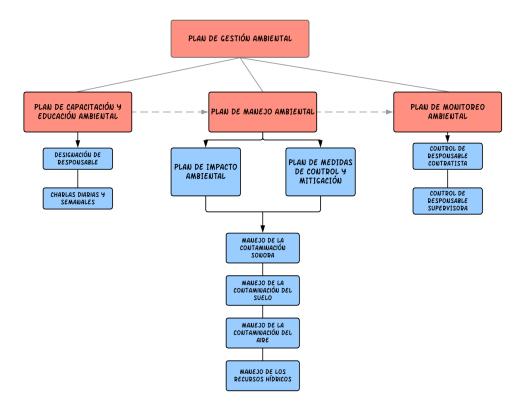


Figura 13-1. Plan de gestión ambiental

Plan de capacitación y educación ambiental:

Proceso en el que la Contratista designa un responsable para dirigir el plan de Gestión ambiental. Este responsable debe ser un profesional experto en estos temas. Este profesional es responsable de organizar las charlas diarias y semanales con los que conformar el grupo de trabajo, donde tocará temas de sensibilización ambiental.

Plan de Manejo ambiental:

En este proceso se debe identificar claramente las actividades que producen un determinado impacto ambiental, el mismo que debe ser mitigado mediante una propuesta de medida. Se escogieron las actividades más relevantes en términos de impacto ambiental. El detalle se puede apreciar en el Anexo 7. Programa de Manejo Ambiental.

Plan de Monitoreo Ambiental

Consiste en el control diario por parte del Responsable Contratista y Responsable Supervisor en la ejecución de las medidas propuestas para los diferentes impactos ambientales identificados en las actividades más incidentes en el tema.

14. Conclusiones de la solución propuesta

Se realizó el estudio un edifico de 4 pisos y un semisótano ubicado en el distrito de Villa El Salvador. Del desarrollo de este proyecto se tienen las siguientes conclusiones:

- La problemática de no poder utilizar un sistema de albañilería confinada en las dos direcciones debido a la poca densidad de muros en la dirección "X", fue solucionada con una reestructuración optando por la sustitución de placas de concreto.
- La edificación finalmente presenta un sistema de muros estructurales en la dirección "X" y un sistema de albañilería confinada en la dirección "Y".
- Del análisis sísmico se obtuvo las propiedades dinámicas de la estructura, siendo estas: periodo fundamental de 0.276 segundos en la dirección "Y" (dirección menos rígida). la distorsión de la estructura en estudio es menor a 0.005 en la dirección "X" y 0.007 en la dirección "Y", que es lo máximo permitido por la NTE E-030, por lo que se concluye que la estructura tiene suficiente rigidez en la dirección "X" e "Y" como para resistir las cargas sísmicas.
- Para el diseño de los elementos estructurales tales como zapatas, vigas de conexión, placas, columnas, muros de albañilería, vigas y losas, las cargas fueron obtenidas del análisis estructural del software ETABS incluyendo así las cargas de sismo; se diseñaron a detalle cada uno de los elementos más esforzados. En el caso de las vigas peraltadas, estas se unificaron a un peralte 0.50 m por solicitud arquitectónica, para las columnas sus dimensiones varían de un ancho de 0.25 m a 0.65 m.
- Los parámetros geotécnicos para la determinación de la capacidad portante se obtuvieron a partir de estudios referenciales. Los parámetros de corte fueron correlacionados a partir del ensayo de SPT.
- De igual forma que para los parámetros geotécnicos, de resultados de ensayos químicos de estudios referenciales, se determinó que para la cimentación se requiere el uso de cemento portland Tipo V y de una resistencia no menor de 310 kg/cm² debido a la exposición severa a sulfatos.
- La capacidad portante se obtuvo con los métodos de Vesic y Meyerhof, teniendo los siguientes resultados 2.4 kg/cm² y 2.2 kg/cm² respectivamente, optando por utilizar de manera conservadora la menor capacidad portante.
- La capacidad portante considerable se debe a que se trata de una arena de compacidad mediana densa y que además la profundidad de cimentación se ha incrementado al requerir la construcción del semisótano.
- Cumpliendo con lo solicitado por el cliente, del análisis de costos y presupuestos,

con montos estimados para las partidas generales de instalaciones sanitarias, instalaciones eléctricas, y equipos eléctricos, mecánicos y especiales se obtuvo que el ratio por área construida se encuentra dentro de los ratios usuales (comparación con la revista costos para una edificación de similar estructuración). El presupuesto total asciende al monto de S/. 2, 041, 515.70 (dos millones cuarenta y un mil quinientos quince y 70/100 nuevos soles).

- Para la ejecución de la obra se estimó que se desarrollará en un total de 158 días calendarios.
- Para garantizar una correcta ejecución de la obra, se establecieron especificaciones técnicas de las actividades de ejecución.
- Se estableció un plan de seguridad en obra, dándose énfasis en las matrices IPERC,
 EPP y ATS, fundamentales para mitigar los riegos durante la etapa de ejecución.
- Para el plan de gestión ambiental se establecieron tres procesos principales, que son:
 Plan de capacitación y educación ambiental, plan de manejo ambiental y plan de monitoreo ambiental.

15. Recomendaciones de la solución propuesta

- Las vigas que se apoyen perpendicularmente a un muro de espesor menor a 25 cm, se deben de rotular los extremos ya que es una mejor representación de su comportamiento de la estructura en general, el cual influirá también en su diseño del elemento estructural.
- Existen entrepisos cuya sobrecarga es 50 kg/m² adicionales a lo indicado por la norma E.020, esto es debido a que la tabiquería existente en algunas zonas, son de pequeñas longitudes lo cual conlleva un mayor tiempo para su modelado, por ende se recomienda colocar una carga distribuida por unidad de área que represente significativamente a la carga real.
- Para el diseño de los elementos estructurales cuyas fuerzas internas presentan valores muy bajos, es recomendable verificar el diseño con el refuerzo mínimo establecido por la norma E.060.
- Tal como se establece en la delimitación de la investigación, se recomienda realizar un estudio de mecánica de suelos para verificar los parámetros establecidos de acore a los estudios referenciales y así poder ajustar el diseño de la cimentación.
- El costo total de la construcción del edificio es aproximado y referencial el cual cumple el ratio de construcción en la ciudad de lima, pero para afinar estos costos es

necesario desarrollar el diseño de los planos de instalaciones eléctricas, instalaciones sanitarias e instalaciones mecánicas y especiales, el cual hará variar el costo total de la edificación.

Referencias bibliográficas

- Arquitea (2019). CONTROL DE CALIDAD EN OBRA Y GESTIÓN DE OBRAS DE CONSTRUCCIÓN, REHABILITACIÓN Y REFORMAS. Obtenido de: http://www.arquitea.com/control-calidad-obra-gestion-obras-construccion-rehabilitacion-reformas.
- Bickel, J. y Montalvo, A. (2018). Worl Resources Forum. Aproximación al sector vivienda y construcción informal en el distrito de Villa El Salvador en Lima, Perú. Obtenido de: https://www.wrforum.org/aproximacion-al-sector-vivienda-y-construccion-informal-en-el-distrito-de-villa-el-salvador-en-lima-peru/
- Bowles J. E. (1996). Foundation analysis and design. New York. 5th edition.
- Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente (2002). Sistemas Integrados de Tratamiento y Usos de Aguas Residuales en América Latina: Realidad y Potencial.
- COSTOS (2019). COSTOS, Revista Especializada para la Construcción.
- CISMID (2011). CENTRO PERUANO JAPONÉS DE INVESTIGACIONES SÍSMICAS Y MITIGACIÓN DE DESASTRES. Convenio específico de cooperación interinstitucional entre el ministerio de vivienda, construcción y saneamiento y la universidad nacional de ingeniería "ESTUDIO DE MICRO ZONIFICACIÓN SÍSMICA Y VULNERABILIDAD EN LA CIUDAD DE LIMA". Apéndice B "CARACTERÍSTICAS GEOTÉCNICAS DEL DISTRITO VILLA EL SALVADOR"
- INGEMMET. (Septiembre de 1992). Instituto Geológico, Minero y Morfológico. Obtenido de Geologia de los cuadrangulos de Lima, Lurin, Chancay y Chosica: http://repositorio.ingemmet.gob.pe/handle/ingemmet/163
- INGEMMET. (31 de Marzo de 2019). Instituto Geológico Minero y Metalúrgico . Obtenido de Carta Geológica Nacional:

 http://geocatminapp.ingemmet.gob.pe/complementos/descargas/Mapas/Geologia10

 O/Franjas/imagenes/geo25j4.jpg
- RNE (2014). Reglamento Nacional de Edificaciones. Norma A.010 Consideraciones generales de diseño.
- RNE (2006). Reglamento Nacional de Edificaciones. Norma A.020 Vivienda.
- RNE (2006). Reglamento Nacional de Edificaciones. Norma TH.010 Habilitaciones Urbanas
- RNE (2006). Reglamento Nacional de Edificaciones. Norma E.020 Cargas.

RNE (2018). Reglamento Nacional de Edificaciones. Norma E.030 Diseño Sismorresistente.

RNE (2018). Reglamento Nacional de Edificaciones. Norma E.050 Suelos y Cimentaciones.

RNE (2009). Reglamento Nacional de Edificaciones. Norma E.060 Concreto Armado.

RNE (2016). Reglamento Nacional de Edificaciones. Norma E.070 Albañilería.

Anexo 1. Parámetros Urbanísticos y Edificatorios

CERTIFICADO DE PARÁMETROS URBANÍSTICOS Y EDIFICATORIOS Nº 554-2019-MVES-GDU-SGOPCCU

TELEFAX:881-1002 Municipalidad De Villa El Salvador A Través De La Gerencia De Desarrollo Urbano, Subgerencia De Obras Privadas, Catastro Y Control www.munives.goventano De Acuerdo A La Ley N° 27157, D.S. N° 008-2000-Mtc, D.S. N° 011-2005-Vivienda, El Reglamento Nacional De Edificaciones, La Ordenanza N° 620 Reglamentaria Del Proceso De Aprobación Del Plan Metropolitano De Acondicionamiento Territorial Y Desarrollo Urbano De Lima Y Al Plano De Zonificación Aprobado Con Ordenanza N° 933-Mml.

CERTIFICA:

Que, el predio ubicado en:

Manzana

Ω

Lote

22

Av. Magisterio (Av. Maria Elena Moyano)

Distrito de Villa El Salvador, provincia de Lima, departamento de Lima.

TIENE LOS SIGUIENTES PARÁMETROS URBANISTICOS:

ÁREA DE TRATAMIENTO NORMATIVO

ZONIFICACION

- :

RDM (Residencial de Densidad Media).

Zona	Usos Permitidos	Lote Mínimo (m²)	Frente Mínimo (ML)	Altura De Edificación Máxima (Pisos)	Área Libre Mínima	Estacionamiento
Residencial	Unifamiliar	90 (Nota 6)	6	3	30%	1 Cada Viv.
de Densidad	Multifamiliar	120	6	3	30%	1 Cada 2 viv.
Media (RDM)	Multifamiliar	150	8	4 (Nota 5)	40%	1 Cada 2 viv.

RETIRO FRONTAL

1.50 ml. En todo su frente, 1.50 ml. En ambos lados para terrenos en esquina.

ALINEAMIENTO DE FACHADA

De acuerdo al retiro Municipal de la Edificación.

USOS PERMISIBLES Y COMPATIBLES

De acuerdo al índice de usos para la ubicación de Actividades Urbanas del distrito conformante del Área de Tratamiento Normativo I de Lima Metropolitana, el mismo que forma parte de la Ordenanza 933-MML como anexo Nº 03, asimismo de acuerdo al Artículo 4º, son compatibles con esta Zonificación las edificaciones o funcionamiento de centros de educación inicial, Centros de Educación, Postas Sanitarias, Centros de Culto Religioso, Áreas Verdes Locales y Equipamiento Comunal.

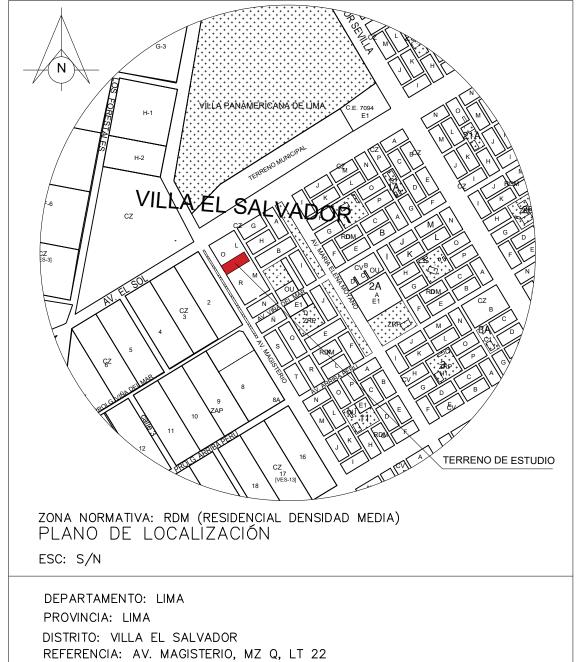
Notas:

- (1) En áreas de asentamientos humanos ubicados en terrenos de pendiente pronunciada solo se permitirá uso Residencial Unifamiliar y Bifamiliar con una altura máxima de 3 pisos.
- (2) En las zonas RDM se podrá construir vivienda Unifamiliar en cualquier lote superior a 90 mm².
- (3) En las zonas residenciales RDM se permitirá en primer piso el uso complementario de comercio a pequeña escala y talleres artesanales hasta un área máxima igual al 35% del área de lote, según lo señalado en el índice de usos para la ubicación de Actividades Urbanas.
- (4) La municipalidad distrital podrá proponer requerimientos de estacionamiento distintos al señalado en el presente cuadro, para su ratificación por la MML.
- (5) Para edificaciones con alturas mayores a 3 pisos se requerirá obligatoriamente la presentación de un estudio geotécnico.
- (6) Solo se admitirán los lotes existentes menores a 90 m² los cuales deben cumplir las recomendaciones señaladas en el artículo 2º de la ordenanza Nº 593 MML
- (7) Para cautelar la seguridad de las edificaciones de más de cinco (5) pisos de usos residencial; para las edificaciones establecidas en las modalidades C y D de uso diferente al residencial y de concurrencia mastva de público y para aquellas habilitaciones urbana que se ubican en zona de riesgo, únicamente si han sido identrificadas previamente como tales a través del plan urbano municipal, requerirá el dictamen del Instituto Nacional de Øefensa Civil INDECI (Art. 6 de la Ley 30056, Ley que Modifica diversas Leyes para facilitar la Inversión, impulsar el Desarrollo Productivo y el Crecimiento Empresarial).

Se extiende el presente Certificado, en mérito al Expediente Administrativo Nº 9350- 2019 fecha 06.06.2019, solicitado por el Sr(A) CARBONELLI ZANABRIA VETO, identificado con NI Nº 70762079 teniendo una vigencia de 36 meses a partir de su recepción, de acuerdo a lo establecido en la Ley Nº 29090. Ley de Regulación de Habilitaciones Urbanas y Edificaciones".

Villa El Salvador, 07 de Junio del 2019.

MUNICIPALITA DE VILLA EL SALVADOR SUB GERENDATE CEPANORIVACIÓN CATASTRO Y TRANSPORTACION DE LA SALVADOR DE LA S

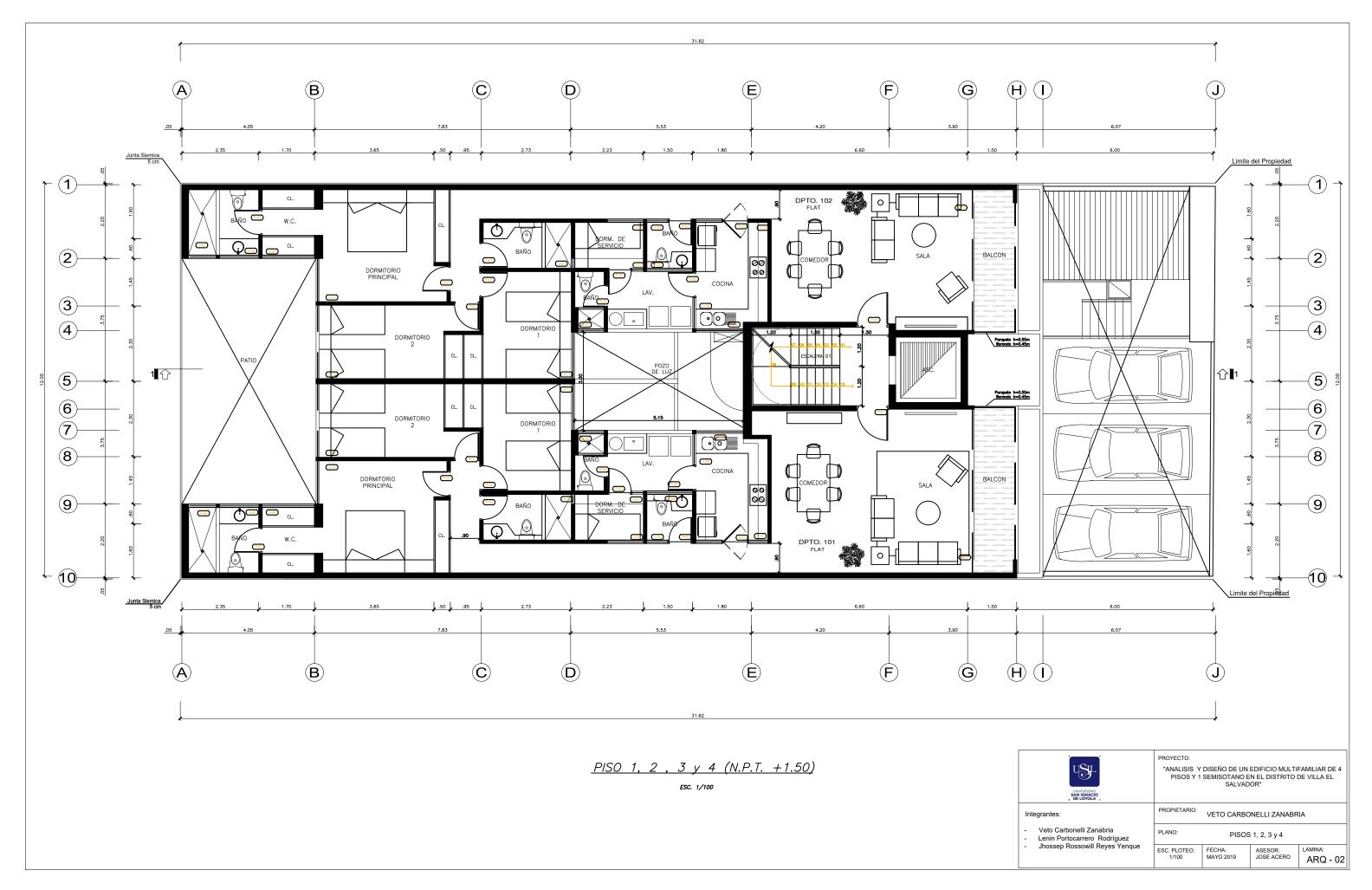

Ing Victoria E Wosado Artica

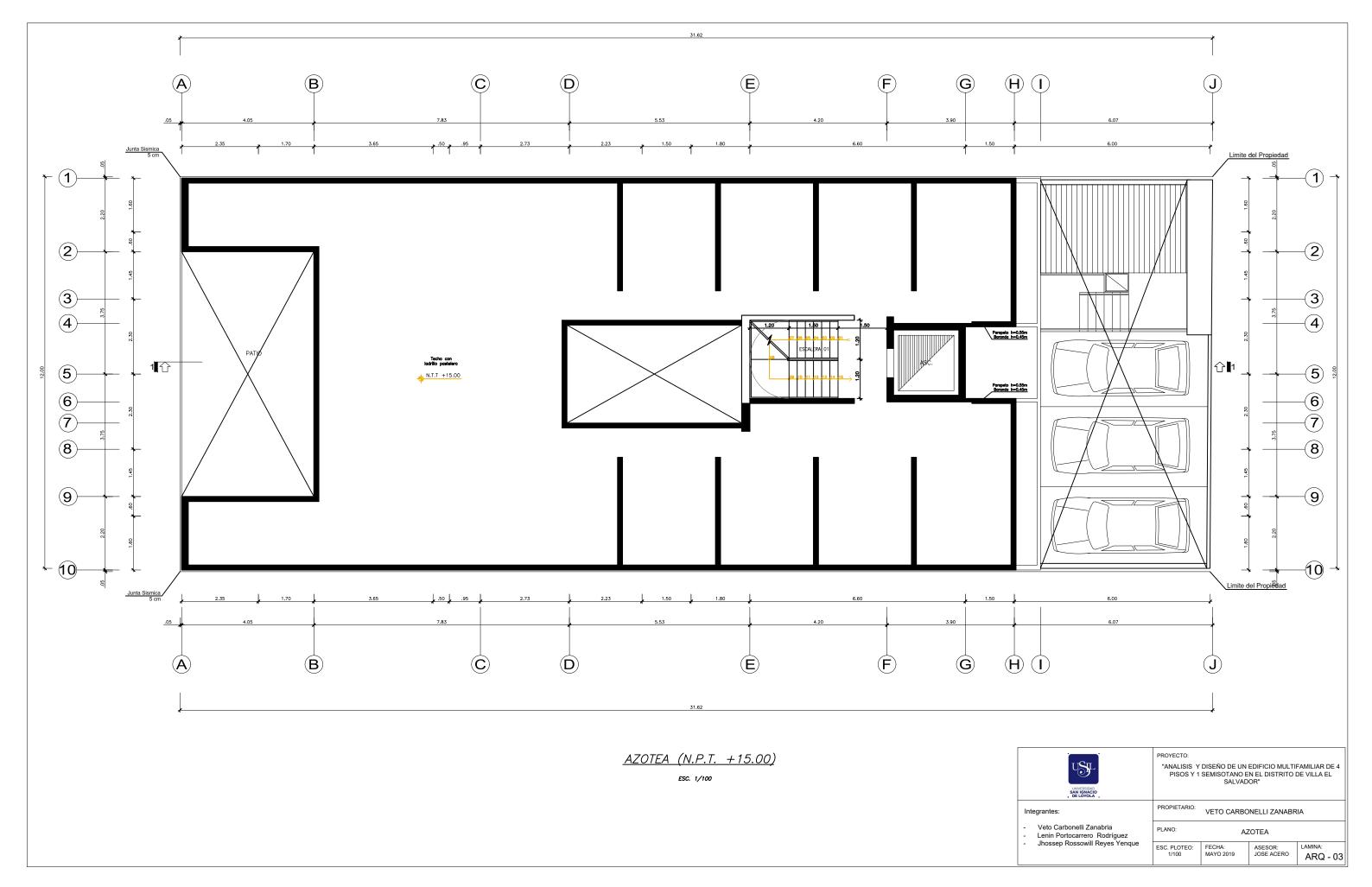
No Desayonos

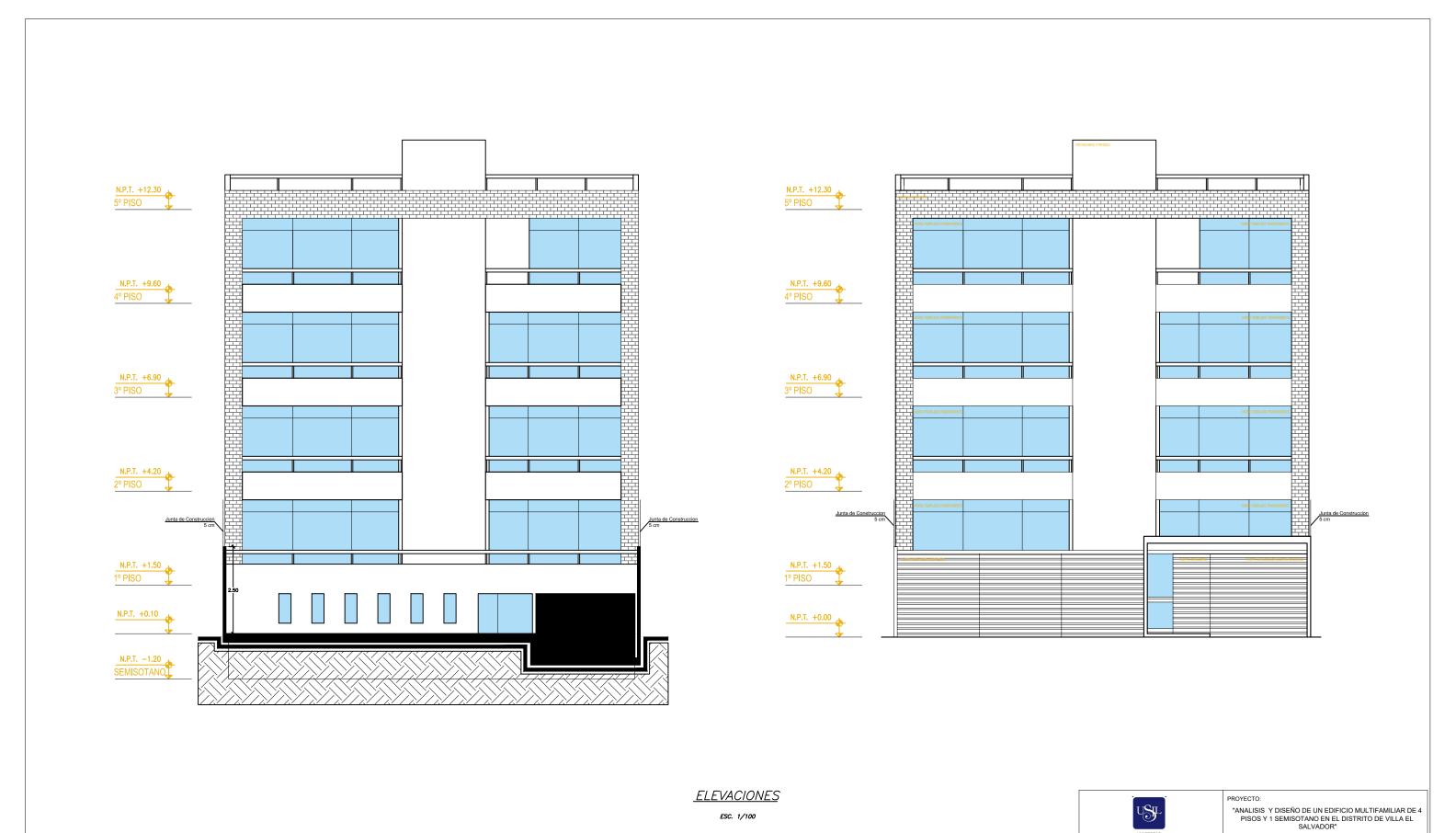
"Villa El Salvador, Ciudad Mensajera de la Paz"
PROCLAMADA POR LAS NACIONES UNIDAS EL 15 - 09 - 87
Premio Príncipe de Asturias de la Concordia

Anexo 2: Plano de ubicación y localización



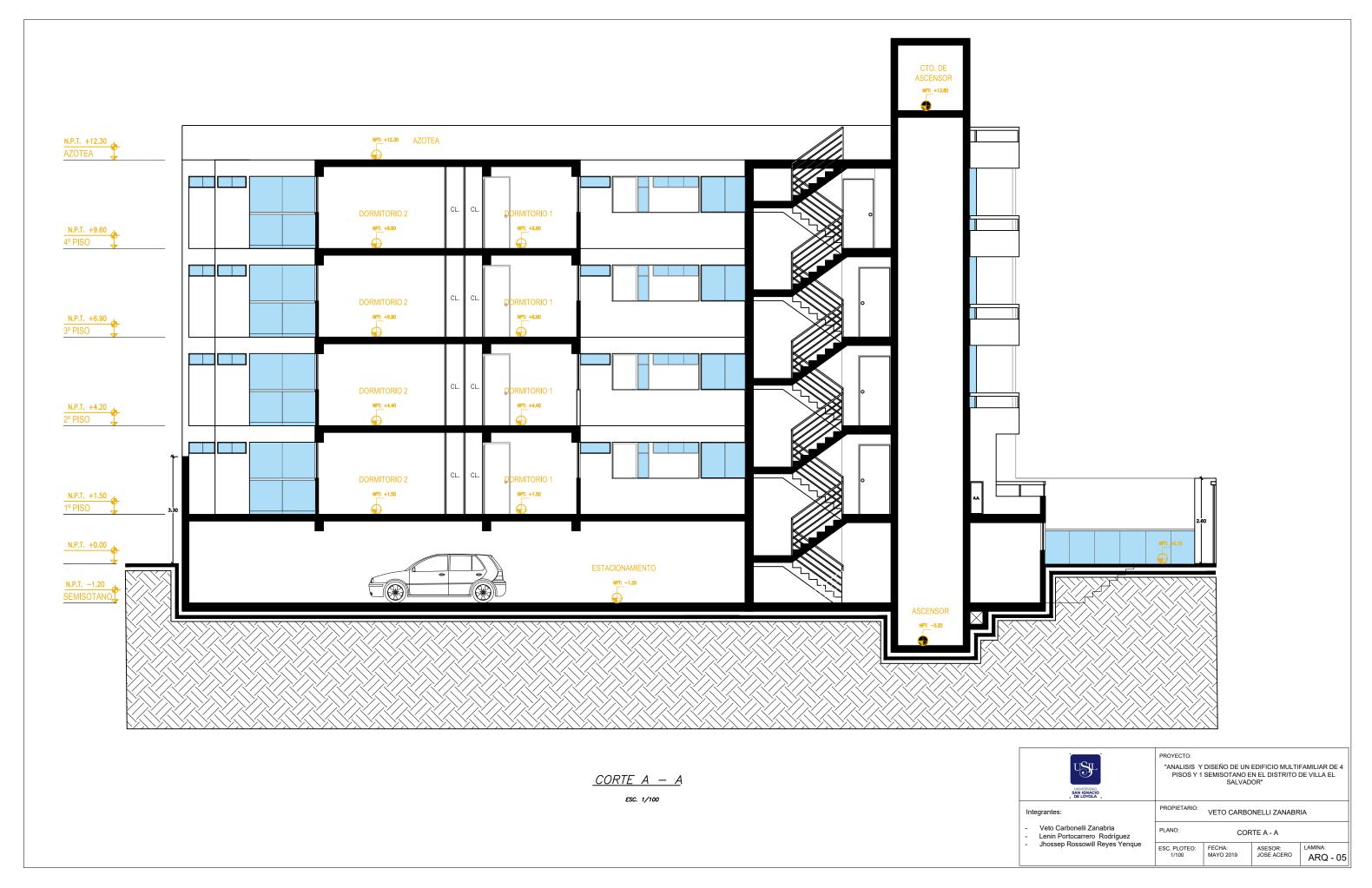

CUADRO COMPARATIVO					
PARAMETROS	MUNICIPALIDAD DE VILLA EL SALVADOR	PROYECTO			
USOS	VIVIENDA MULTIFAMILIAR	VIVIENDA MULTIFAMILIAR			
DENSIDAD NETA	-	_			
FRENTE MÍNIMO	6.0 M	12.0 M			
ÁREA LIBRE	40% MIN	42 %			
ALTURA MÁXIMA	5 PISOS	4 PISOS			
RET. FRONTAL CALLE	3.0 M	3.0 M			
ESTACIONAMIENTOS	8 ESTACIONAMIENTOS MIN.	10 ESTACIONAMIENTOS			


CUADRO [DE ÁREAS
PISOS	ÁREA (M2)
SOTANO	308
PISO 2	250
PISO 3	250
PISO 4	250
PISO 5	250
ÁREA CONSTRUIDA	1308
ÁREA TERRENO	380.96
ÁREA LIBRE	160.08


UNIVERSIDAD SAN IGNACIO DE LOYOLA		DISEÑO DE UN SEMISOTANO E SALVAD	N EL DISTRITO I	
Integrantes:	PROPIETARIO:	VETO CARBO	NELLI ZANABR	IA
 Veto Carbonelli Zanabria Lenin Portocarrero Rodríguez 	PLANO: UBICACIÓN Y LOCALIZACIÓN			
- Jhossep Rossowill Reyes Yenque	ESC. PLOTEO: 1/100	FECHA: MAYO 2019	ASESOR: JOSE ACERO	LAMINA: U - 01

Anexo 3: Plano de arquitectura

ASESOR: JOSE ACERO LAMINA: ARQ - 04

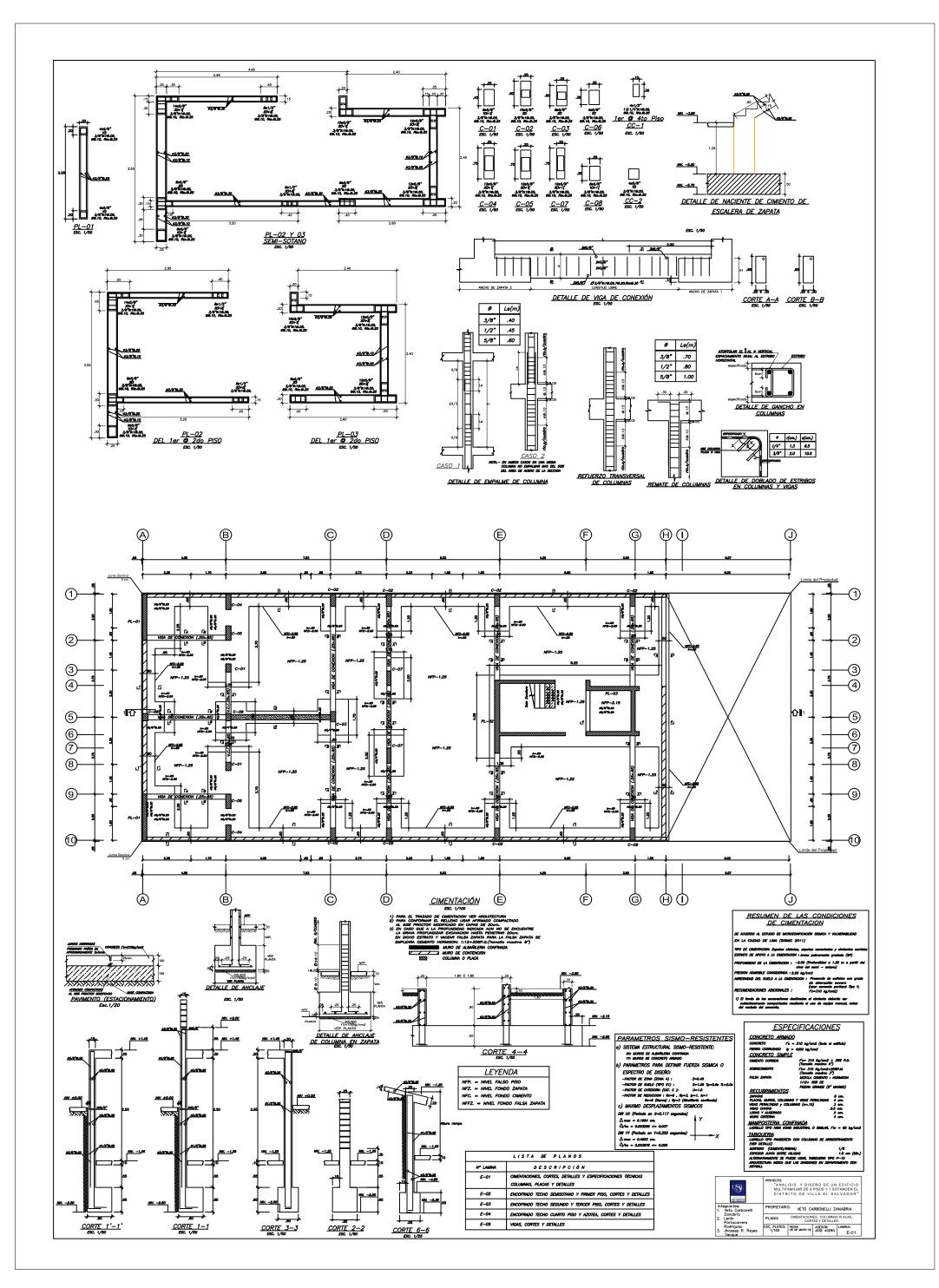

PROPIETARIO: VETO CARBONELLI ZANABRIA

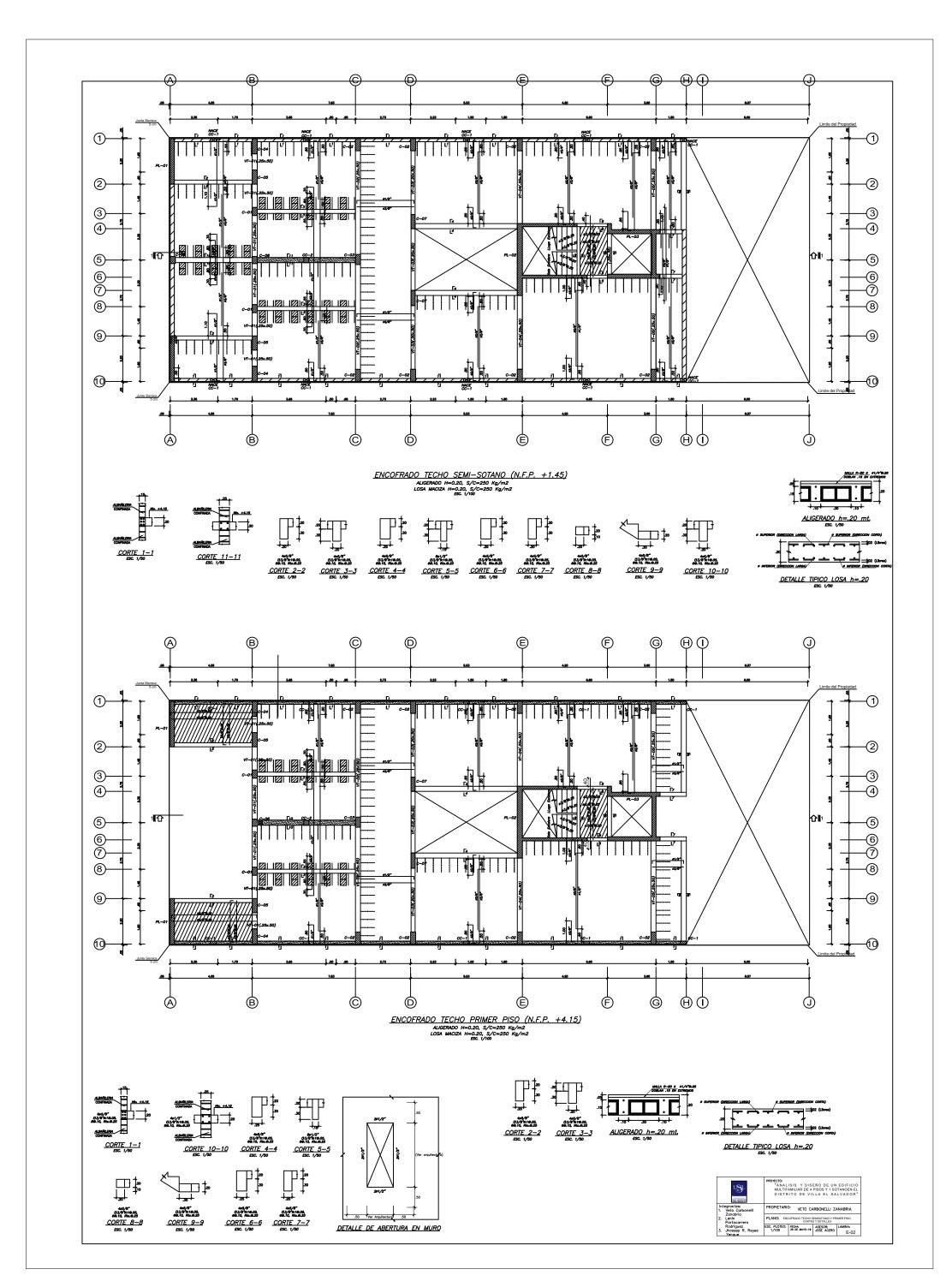
FECHA: MAYO 2019

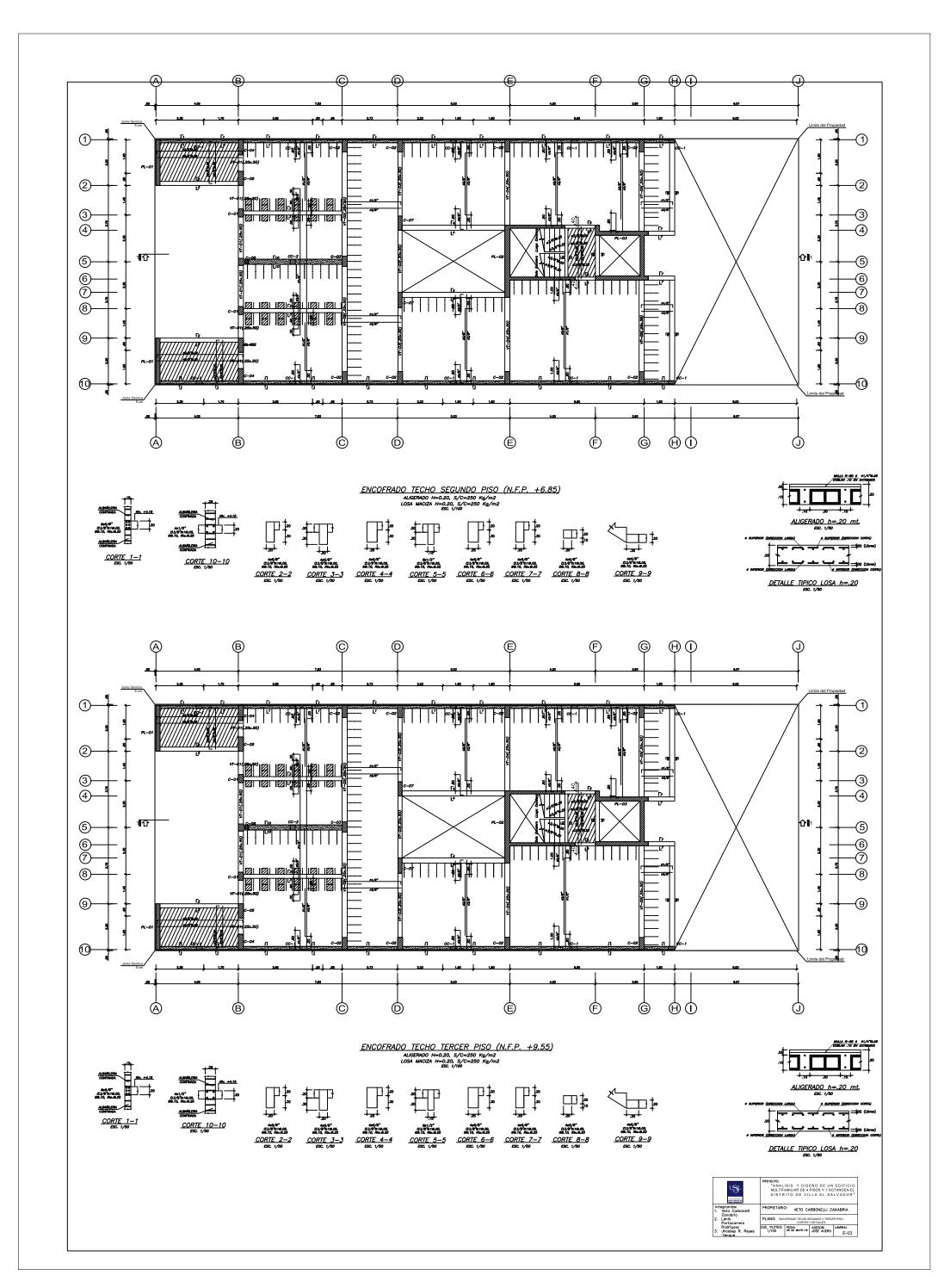
ESC. PLOTEO: 1/100 ELEVACIONES

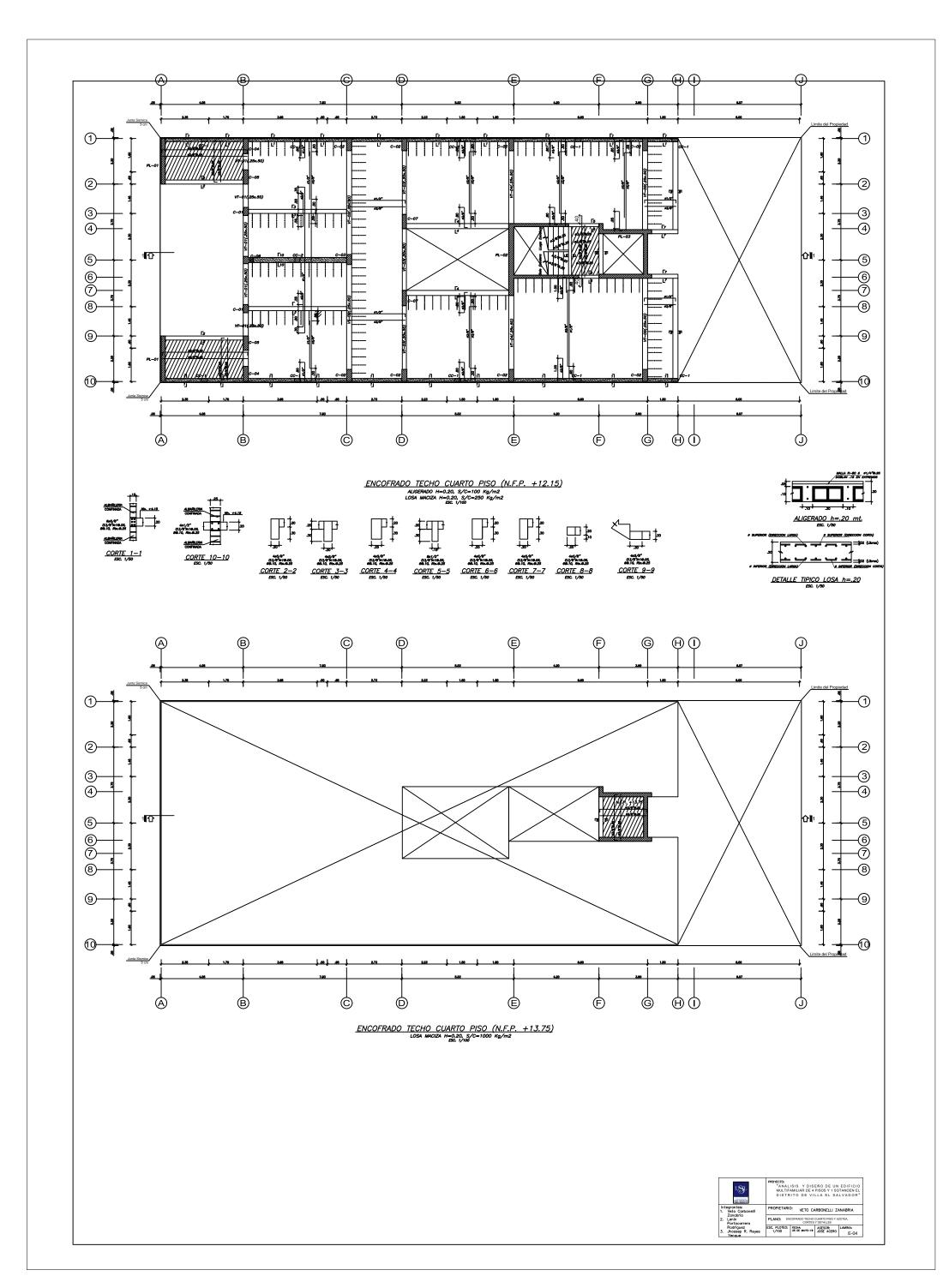
Integrantes:

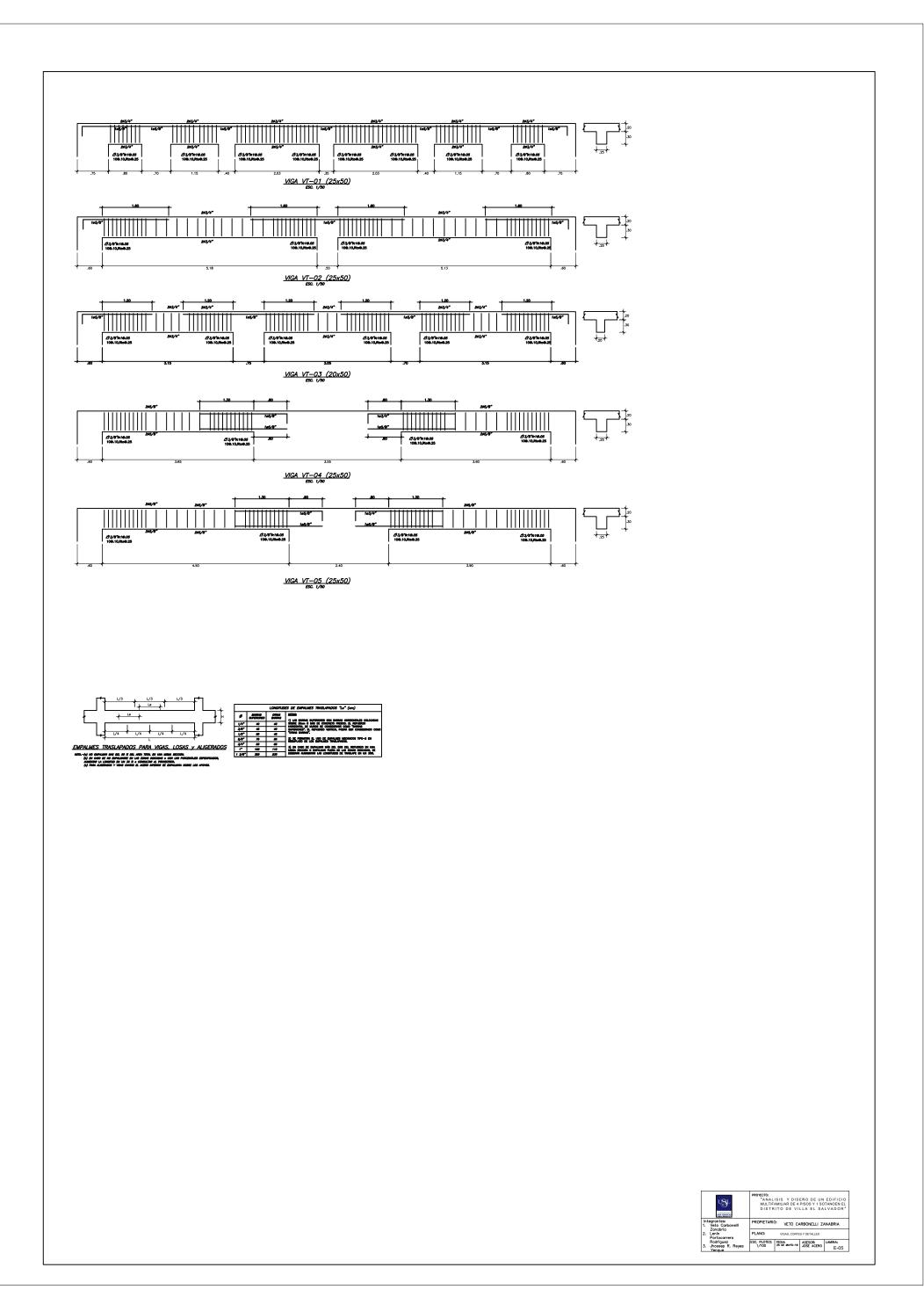
Veto Carbonelli Zanabria Lenin Portocarrero Rodríguez Jhossep Rossowill Reyes Yenque


	PUERTAS								
Nº	ANCHO	ALTO	ALFEIZAR	MATERIAL					
P-01	1.00	2.10	-	ANTIFUEGO					
P-02	0.75	2.10	-	MADERA					
P-03	0.80	2.10	-	MADERA					
P-04	0.70	2.10	-	MADERA					

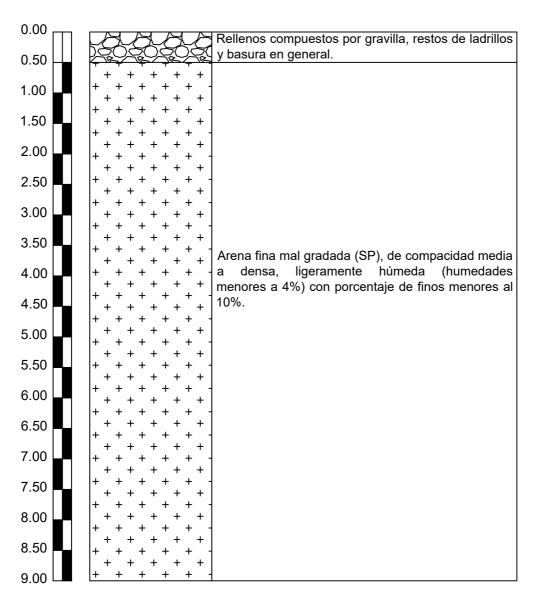

		VENTAN	IAS	
Nº	ANCHO	ALTO	ALFEIZAR	MATERIAL
V-01	0.30	0.30	1.80	VIDRIO
V-02	0.85	0.30	1.80	VIDRIO
V-03	1.10	0.30	1.80	VIDRIO
V-04	1.40	0.30	1.80	VIDRIO
V-05	1.20	0.30	1.80	VIDRIO
V-06	1.65	0.30	1.80	VIDRIO
V-07	0.35	1.10	1.00	VIDRIO
V-08	0.95	1.10	1.00	VIDRIO
V-09	2.15	1.10	1.00	VIDRIO
V-10	2.20	0.30	1.80	VIDRIO
V-11	1.43	1.10	1.00	VIDRIO
V-12	1.33	1.10	1.00	VIDRIO
V-13	2.25	1.10	1.00	VIDRIO


	MAMPARAS								
N° ANCHO ALTO ALFEIZAR MATERIAL									
M-01	4.60	2.10	-	VIDRIO					
M-02 4.70 2.10 - VIDRIO									




Anexo 4: Planos de diseño estructural y cimentaciones

Anexo 5: Perfil Estratigráfico


PERFIL ESTRATIGRÁFICO

Proyecto : ANÁLISIS Y DISEÑO DE UN EDIFICIO

MULTIFAMILIAR DE ALBAÑILERÍA CONFINADA Y CONCRETO ARMADO DE 4 PISOS Y 1 SEMISÓTANO EN EL DISTRITO DE VILLA EL

SALVADOR

Ubicación : Av. Magisterio. (Av. María Elena Moyano), Mz. Q, Lt. 22

Anexo 6: Matrices de Seguridad en Obra

Matriz de Identificación de Peligros, Evaluación de Riesgos y Determinación de Controles-IPERC

Proceso/sub-proceso

VACIADO DE CONCRETO DE LA LOSA ALIGERADA

Obra: EDIFICIO MULTIFAMILIAR DE ALBAÑILERÍA CONFINADA Y CONCRETO ARMADO DE 4 PISOS Y 1 SEMISÓTANO EN EL DISTRITO DE VILLA EL SALVADOR

						PRO	OBABILII	DAD						
TAREA	ACTIVIDADES	PELIGRO	RIESGO	REQUISITO LEGAL	INDICE DE PERSONAS EXPUESTAS (A)	INDICE DE PROCEDIMIENTOS EXISTENTES (B)	INDICE DE CAPACITACION (C.)	INDICE DE EXPOSICION AL RIESGO (D)	INDICE DE PROBABILIDAD (A+B+C+D)	INDICE DE SEVERIDAD	PROBABILIDAD X SEVERIDAD	NIVEL DEL RIESGO	RIESGO SIGNIFICATIVO	MEDIDA DE CONTROL
		Manipulación de la mezcla	Alergias de piel y dermatitis por contacto directo	Norma G050 / DS 021-83 TR	5	2	2	2	11	1	11	то		Uso de EPP adecuados (Protección cuerpo completo) Botiquín de primeros auxilios.
VACIADO DE CONCRETO DE LA			Fractura, contusión en distintas partes del cuerpo	Norma G050 / DS 021-83 TR	5	2	2	2	11	2	22	IM	SI	Orden y Limpieza del área (antes, durante y al termino de labores) Uso de EPP adecuados (Incluye arnés de seguridad), instalación de barreras de proteción.
CONCRETO DE LA	Colocación Vibrado Nivelación	'	Fractura, contusión en distintas partes del cuerpo	Norma G050 / DS 021-83 TR	5	2	2	2	11	2	22	IM		Uso de EPP adecuados (Incluye arnés de seguridad), instalación de barreras de proteción. Señaléticas de advertencia.
			Tensión muscular, fatiga, dolor del cuello	Norma G050 / DS 021-83 TR	5	2	2	2	11	1	11	то	SI	Personal calificado para uso de herramientas. Alternación de personal para la actividad.
		Contacto electrico indirecto	Quemaduras, shock eléctrico	Norma G050 / DS 021-83 TR	5	2	2	2	11	2	22	IM	SI	Conexiones y conectores eléctricos industriales, inspección de pre-uso de equipos
		Radiacion solar	Insolacion, dolor de cabeza	Norma G050 / DS 021-83 TR	5	2	2	2	11	1	11	то		Uso de EPP (bloqueador solar) Charla de capacitación Radiacion solar

INDICE			PROBABILIDAD		SEVERIDAD	ESTIMACION DEL NIVEL DE RIESGO	
INDICE	PERSONAS EXPUESTAS	PROCEDIMIENTOS EXITENTES	CAPACITACION	EXPOSICION AL RIESGO	(CONSECUENCIA)	GRADO DE RIESGO	PUNTAJE
4	De 1 a 3	Existen son satisfactorios y	Personal entrenado, conoce el	Al menos una vez al año (S)	Lesion sin incapacidad (S)	TRIVIAL (T)	4
1	suficientes	suficientes	peligro y lo previene	Esporadicamente (SO)	Disconfort / Incomodidad (SO)	TOLERABLE (TO)	DE 5 a 8
2	Do 4 a 40 Existe		Personal parcialmente entrenado, conoce el peligro	Al menos una vez al mes (S)	Lesion con incapacidad temporal (S)	MODERADO (M)	DE 9 a 16
2	De 4 a 12	satisfactorios o suficientes	pero no toma acciones de control	Evetualmente (SO)	Daño a la salud reversible	IMPORTANTE (IM)	DE 17 a 24
3			Personal no entrenado, no conoce, no toma acciones de	Al menos una vez al dia (S)	Lesion con incapacidad permanentemente (S)	INTOLERABLE (IT)	DE 25 a 36
	ae 12		control	Permanentemente (SO)	Daño a la salud irreversible	xxxxxxxx	xxxxxxxx

MATRIZ ESTÁNDAR DE EQUIPOS DE PROTECCIÓN INDIVIDUAL							
DOCUMENTO N°							
COMPAÑÍA / EMPRESA /		RESPONSABLE DE SSO:					
INSTITUCIÓN:		FIRMA/SELLO DEL RESPONSABLE DE SSO:					
	PROCESO/SUBPROCESO:						

				TIPO DE RO	OTILI ACIÓN	
PELIGRO	EPI/EPP	ESPECIFICACIONES	TIPO DE TRABAJO	ADVERTENCIA	OBLIGACIÓN	Marca a utilizarse
	ARNÉS	El arnés de seguridad con amortiguador de impacto y doble línea de enganche con mosquetón de doble seguro, para trabajos en altura, permite frenar la caída, absorber la energía cinética y limitar el esfuerzo transmitido a todo el conjunto. ANSI 2359.1-2007		^	9	
Caída de personas desde diferente altura	LÍNEA DE VIDA	Deberán soportar al menos una carga de 2 265 kg (5 000 lb.) por trabajador.	TRABAJOS EN ALTURA	7		
	CONECTORES	La longitud de la cuerda de seguridad (cola de arnés) no deberá ser superior a 1,80 m, deberá tener en cada uno de sus extremos un mosquetón de anclaje de doble seguro y un amortiguador de impacto de 1,06 m (3.5 pies) en su máximo alargamiento. La cuerda de seguridad nunca deberá encontrarse acoplada al anillo del arnés.				
Choques con: Objetos desprendidos Objetos fijos	CASCO DE SEGURIDAD	Casco de Clase A (General): Trabajos industriales en general. Protección de tensión eléctrica hasta 2200 V., C.A. 60 HZ. ANSI Z89.1 – 2003	RUTINARIO EPI MÍNIMO / BÁSICO	PELIGRO CAIDA DE OBJETOS		
Contacto eléctrico indirecto	CASCO DE SEGURIDAD DIELÉCTRICO	Casco de Clase B (Eléctrica): Trabajos industriales en general, con grado de protección igual al de la clase A. Protección para tensión eléctrica hasta 20000 V., C.A. 60 HZ. ANSI Z89.1 – 2003	TRABAJOS DONDE HAYA RIESGO ELÉCTRICO	4		
Contacto eléctrico indirecto	GUANTES	Dieléctricos De acuerdo a la tensión de trabajo. EN 60903	TRABAJOS DONDE HAYA CONTACTO DIRECTO CON ENERGIA ELÉCTRICA	<u>\$</u>		

PELIGRO	EPI/EPP	ESPECIFICACIONES	TIPO DE TRABAJO	TIPO DE RO	OTULACIÓN OBLIGACIÓN	Marca a utilizarse
	ZAPATOS DE SEGURIDAD	ZAPATOS / BOTAS DE SEGURIDAD DIELÉCTRICAS Botas de cuero resistentes al agua Suela antideslizante y reforzada para evitar punzamientos Puntera: En material P.V.C termo formada Resistencia a pruebas eléctricas con tensión eléctrica aplicada a 14.000 voltios en condiciones de piso seco. NORMA: ASTM F13, ANSI Z41 ASTM F 2412 Y 2416/05.	NO RUTINARIO EPI MÍNIMO / BÁSICO			
	GUANTES	De cuero, de malla metálica o Kevlar para trabajos de manipulación en general y para trabajos de manipulación de piezas cortantes. EN-420	RUTINARIO EPI MÍNIMO / BÁSICO		S S S S S S S S S S S S S S S S S S S	
Cortes y Punzamientos	BOTAS	Botines de cuero de suela antideslizable, con puntera de acero contra riesgos mecánicos. Botas de jebe con puntera de acero cuando se realicen trabajos en presencia de agua o soluciones químicas. ANSI Z41-1999. ASTM F 2412-11 y F2413-11	RUTINARIO EPI MÍNIMO / BÁSICO		T)	
Proyección de partículas	GAFAS DE SEGURIDAD CONTRA IMPACTOS	Monogafas o gafas panorámicas. Estas se ajustan completamente a la cara y proveen protección contra salpicaduras en la manipulación de químicos o ante la presencia de gases y vapores; además, protegen contra impactos de baja y mediana energía y temperaturas extremas. EN-166			(E)	
Troycector de particulas	PROTECTOR FACIAL	Protector facial constituido de un arnés de suspensión regulable, de un adaptador frontal y de un visor incoloro. EN-166	RUTINARIO EPI MÍNIMO / BÁSICO			
Exposición a radiaciones termicas	ROPA DE TRABAJO	Pantalón con tejido de alta densidad tipo jean En su defecto podrá utilizarse mameluco de trabajo. EN-340	TRABAJOS DONDE HAYA RIEGO DE SALPICADURAS DE CHISPAS U OTROS.	C	•	
Temperatura, ambientes calorosos	PROTECCIÓN OCULAR Y FACIAL	Diseñado para proteger cara, ojos y cuello. Capacidad de abatimiento de 90°.	TRABAJOS DONDE HAYA RIEGO DE SALPICADURAS DE CHISPAS U OTROS.			
Duide	PROTECTORES AUDITIVOS	Deberán utilizarse protectores auditivos (tapones de oídos o auriculares) en zonas donde se identifique que el nivel del ruido excede los 80 (dBA). UNE-EN 352	NO RUTINARIO			
Ruido	PROTECTORES AUDITIVOS CON COMUNICACIÓN	Deberán utilizarse protectores auditivos (tapones de oídos o auriculares) en zonas donde se identifique que el nivel del ruido excede los 100 (dBA)	NO RUTINARIO			

PELIGRO	EPI/EPP	ESPECIFICACIONES	TIPO DE TRABAJO	TIPO DE RO	OTULACIÓN OBLIGACIÓN	Marca a utilizarse
	PROTECCIÓN CUERPO COMPLETO	Los trajes deben tener todas sus costuras y uniones herméticas en el propio traje, así como las conexiones con los demás accesorios integrales, como guantes, botas, etc. Su material es resistente a la permeación de los productos químicos que han sido ensayados	NO RUTINARIO		*	
		DELANTAL PARA MANEJO DE QUÍMICOS Delantal plástico de PVC	NO RUTINARIO			
Exposición a químicos	PROTECCIÓN OCULAR	GOOGLES monogafas para protección contra polvo fino o salpicadura de productos químicos deberán tener ventilación indirecta y anti empaño Filtro de rayos UV Impactos de alta velocidad (120m/s) NORMA: ANSI Z87,1 ó CE EN 166 NOTA: Para el caso de actividades de oxicorte/suela	RUTINARIO EPI MÍNIMO / BÁSICO		(B)	
	PROTECCIÓN RESPIRATORIA, FACIAL Y OCULAR	Resistencia a la respiración, Filtro de penetración, obtrucción por polvo Campo de visión, Pruebas de resistencia mecánica	NO RUTINARIO		(B)®	
	PROTECCIÓN RESPIRATORIA	Protección frente a humos, vapores y gases. equipados con filtros antigás o antivapores que retengan o neutralicen las sustancias nocivas presentes en el aire del ambiente de trabajo.	NO RUTINARIO			
Exposición a químicos	GUANTES PARA MANIPULACIÓN DE QUÍMICOS	GUANTES DE NEOPRENO O DE PLASTICO Resistentes a la abrasión y agentes químicos de carácter agresivo. Para protegerse de agentes químicos nocivos.	RUTINARIO EPI MÍNIMO / BÁSICO			

Anexo 7: Matriz de Programa de Manejo Ambiental

				Matriz de Progr	rama de Manejo Ambiental				
N° de	Actividades durante la	Contaminación sonora	Contaminación del suelo	Contaminación del aire	Recurso hídrico	Contaminación sonora	Contaminación del suelo	Contaminación del aire	Recurso hídrico
actividad	ejecución de la obra	Impacto ambiental producido por:			Med	lidas de mitigación o control	ambiental mediante:		
1	Despliegue de personal en obra		Residuos sólidos como papel, latas, botellas,etc.	Cigarrillos, quema de deshechos,etc.	Consumo excesivo para asearse, para limpieza de ambientes, etc.		Botes de basura por tipos de residuos distribuidos estratégicamente	Prohibición de quema de materiales y otros	Control de uso del agua
2	Limpieza del terreno	Ruido y vibración por el uso de herramientas manuales	Acumulación de residuos sólidos	Polvo generado por la limpieza		Uso de herramientas en estado adecuado para la reducción de tiempos en la actividad	Eliminación de desmonte a botaderos autorizados	Humedecimiento permanente del material a limpiar	
3	Excavación masiva y localizada	Ruido y vibración por maquinarias	Desmonte de residuos del terreno	Polvo y gases debido al combustible de maquinarias					
4	Relleno y compactación	Ruido por la retroexcavadora y vibraciones por las compactadoras		Gases por uso de maquinaria con combustión y polvo por el material compactado		Maquinarias en estado adecuado y eficientes para reducción de tiempos.		Humedecimiento controlado	
5	Armado de andamios	Ruido por el montaje de elementos de andamio				Cuadrilla capacitada y organizada para reducir el tiempo de actividad			
6	Encofrado y desencofrado	Ruido generado por golpes con martillo, etc.	Residuos como alambres, clavos, etc.			Cuadrilla capacitada y organizada para reducir el tiempo de actividad	Personal designado para recoger residuos metálicos.		
7	Vaciado de concreto	Ruido generado por el motor de la bomba, de los vibradores.	Residuos de concreto de la bomba	Gases por uso de maquinaria con combustión	Humedecimiento excesivo del encofrado				Control de humedecimiento
8	Armado de refuerzo de acero		Residuos de alambres, varillas de acero, etc.				Personal designado para recoger residuos metálicos.		
9	Curado		Filtración al suelo de sustancias tóxicas.		Uso excesivo de agua para el curado de elementos de concreto armado		Reducción de uso de agentes químicos curadores		Uso de aditivos químicos poco tóxicos
10	Preparación de concreto y mortero	Ruido de mezcladoras y herramientas manuales	Desmonte de desperdicio de concreto	Emisión de gases por el combustible de máquinas		Maquinarias en estado adecuado y eficientes para reducción de tiempos	Eliminación inmediata a botaderos autorizados	Reducción en tiempos de actividad	
11	Tarrajeo, revoques y revestimientos	Ruido por las herramientas manuales	Residuos de mortero			Cuadrilla capacitada y organizada para reducir el tiempo de actividad	Eliminación inmediata a botaderos autorizados		
12	Desmontaje de infraestructura provisional	Ruido por las herramientas manuales				Cuadrilla capacitada y organizada para reducir el tiempo de actividad			

Anexo 8: Metrados

METRADOS

EDIFICIO MULTIFAMILIAR DE 4 PISOS Y 1 SEMISÓTANO EN EL DISTRITO DE VILLA EL SALVADOR

Cliente: UNIVERSIDAD SAN IGNACIO DE LOYOLA

Lugar: LIMA - LIMA - VILLA EL SALVADOR

ITEM	DESCRIPCION DE LA PARTIDA	UNIDAD	METRADO
01	Estructuras		-
01.01	Obras preliminares		
01.01.01	Contrucciones provisionales		
01.01.01.01	Oficina	día	150.00
01.01.01.02	Almacen	día	150.00
01.01.01.03	Comedor	gbl	1.00
01.01.01.04	Servicios higénicos	mes	5.00
01.01.01.05	Cartel de obra	und	1.00
01.01.01.06	Cerco temporal de obra	m	12.00
01.01.02	Instalaciones provisionales		
01.01.02.01	Instalación provisional de energía eléctrica	gbl	1.00
01.01.02.02	Instalación provisional de agua	gbl	1.00
01.01.03	Trabajos preliminares		
01.01.03.01	Limpieza de terreno	m2	375.00
01.01.03.02	Trazo, nivel y replanteo	m2	375.00
01.02	Movimiento de tierras		
01.02.01	Excavación masiva	m3	428.40
01.02.02	Excavación de zanjas	m3	177.19
01.02.03	Nivelación y compactación en fondo de cimentación	m2	118.13
01.02.04	Relleno y compactado con material de préstamo	m3	94.50
01.02.05	Eliminación de material excedente	m3	605.59
01.03	Obras de Concreto Simple		
01.03.01	Solado concreto f'c=100 kg/cm2	m3	90.39
01.03.02	Cimientos corridos	m3	27.74
01.03.03	Falso piso de e=10 cm.	m2	378.80
01.04	Obras de Concreto Armado		
01.04.01	Zapatas		
01.04.01.01	Concreto	m3	54.23
01.04.01.02	Encofrado	m2	103.02
01.04.01.03	Acero	Kg	1634.23
01.04.02	Vigas de conexión		
01.04.02.01	Concreto	m3	9.24
01.04.02.02	Encofrado	m2	73.91
01.04.02.03	Acero	Kg	873.18
01.04.03	Columnas y Placas		
01.04.03.01	Concreto	m3	145.39
01.04.03.02	Encofrado	m2	1568.29
01.04.03.03	Acero	kg	14694.49
01.04.04	Columnetas		
01.04.04.01	Concreto	m3	9.20
01.04.04.02	Encofrado	m2	230.00
01.04.04.03	Acero	kg	1275.49

METRADOS

EDIFICIO MULTIFAMILIAR DE 4 PISOS Y 1 SEMISÓTANO EN EL DISTRITO DE VILLA EL SALVADOR

Cliente: UNIVERSIDAD SAN IGNACIO DE LOYOLA

Lugar: LIMA - LIMA - VILLA EL SALVADOR

ITEM	DESCRIPCION DE LA PARTIDA	UNIDAD	METRADO
01.04.05	Vigas		
01.04.05.01	Concreto	m3	55.48
01.04.05.02	Encofrado	m2	94.38
01.04.05.03	Acero	kg.	8025.70
01.04.06	Losa Aligerada		
01.04.06.01	Concreto	m3	91.02
01.04.06.02	Encofrado	m2	1040.19
01.04.06.03	Acero	kg	923.69
01.04.06.04	Ladrilo de techo (0.30x0.30x0.15)	und	9000.00
01.04.07	Escalera		
01.04.07.01	Concreto	m3	8.43
01.04.07.02	Encofrado	m2	54.12
01.04.07.03	Acero	Kg	534.24
02	<u>Arquitectura</u>		
02.01	Muros portantes y Tabiquería		
02.01.01	Muro de cabeza, mortero 1:4	m2	47.50
02.01.02	Muro de soga, mortero 1:5	m2	521.95
02.01.03	Tabiquería de canto, mortero 1:5	m3	432.40
02.02	Revogues y Revestimientos		
02.02.01	Tarrajeo de muros interiores	m2	1434.25
02.02.02	Tarrajeo de muros exteriores	m2	286.85
02.03	Cielorraso		
02.03.01	Cielorraso con mezcla 1:5	m2	1040.19
02.04	Pisos y Pavimentos		
02.04.01	Contrapiso	m2	1040.19
02.04.02	Piso de cerámica	m2	1040.19
02.05	Pintura		
02.05.01	Pintura de Cielorraso	m2	1040.19
02.05.02	Pintura de Muros Interiores	m2	1434.25
02.05.03	Pintura de Muros exteriores	m2	286.85
02.06	Carpintería de madera		
02.06.01	Puertas de madera	m2	16.80
02.06.02	Puertas contraplacadas	m2	117.60
02.06.03	Ventanas con hojas de madera	m2	95.13
02.07	Cerrajería		
02.07.01	Bisagras capuchinas aluminizadas de 3 1/2 X3 1/2"	und	320.00
02.07.02	Cerradura de puertas de ingreso	und	8.00
02.07.03	Cerradura de puertas interiores	und	72.00
02.08	Vidrios y cristales	a.i.a	12.00
02.08.01	Vidrio semidoble incoloro	p2	330.33
02.09	Aparatos y accesorios sanitarios	P2	000.00
02.09.01	Inodoro	und	32.00
02.09.01	Lavatorio	und	32.00
02.09.03	Ducha cromada	und	16.00
02.09.04	Toallero de losa blanco	und	16.00
02.09.04	Papelera de losa blanco	und	32.00
	Jabonera losa blanco	und	
02.09.06	טמטטווכומ וטפע טומווטט	unu	16.00 128

METRADOS

EDIFICIO MULTIFAMILIAR DE 4 PISOS Y 1 SEMISÓTANO EN EL DISTRITO DE VILLA EL SALVADOR

METRADO DE ELEMENTOS DE CONCRETO, MUROS, TABIQUES Y ARQUITECTURA EN GENERAL

		LLLIVILIA I O	3 DE CON	KETO, IVIOR	OS, TABIQUES	TARQUITE	CIUKA EN	GLIVLINAL	
Zapatas									
Eje	Elemento	Cantidad	I (m)	a (m)	h (m)	Vol (m3)	Per (m)	Enc (m2)	Solado (m2
Eje B-B	C-01, C-04 y C-05	2	4.35	2.00	0.60	10.44	12.7	15.24	17
Eje 1-1	C-06	1	1.50	1.50	0.60	1.35	6	3.60	2.2
Eje A-A	PL-01	2	2.65	1.55	0.60	4.93	8.4	10.08	8.2
Eje 5-5	C-08	1	1.50	1.05	0.60	0.95	5.1	3.06	1.5
		8							17.
Eje C-C	C-02		1.80	1.20	0.60	10.37	6	28.80	
Eje 5-5	C-03	1	1.75	1.50	0.60	1.58	6.5	3.90	2.6
Eje D-D	C-07	2	2.00	1.45	0.60	3.48	6.9	8.28	5
Eje E-Ey Eje H-H	PL-02 y PL-03	1	8.75	3.50	0.60	18.38	24.5	14.70	30.6
Eje E-Ey Eje H-H	PL-02 y PL-03	8	1.05	0.55	0.60	2.77	3.2	15.36	4.
Lje L Ly Lje II II	1 L 02 y 1 L 03	Ü	1.05	0.55	0.00	54.23	J.2	103.02	90.39
						54.25		105.02	90.59
Cimiento corrido									
Eje	Elemento	Cantidad	I (m)	a (m)	h (m)	Vol (m3)	Solado (m2	<u>2</u>)	
Eje A-A	Cimiento corrido	1	5.20	0.60	0.60	1.87	3.12		
Eje H-H	Cimiento corrido	1	3.95	0.60	0.60	1.42	2.37		
Eje 1-1 y Eje 10-10	Cimiento corrido	2	16.80	0.60	0.60	12.10	20.16		
Eje 5-5	Cimiento corrido	1	3.48	0.60	0.60	1.25	2.088		
							27.74		
Excavación de zanjas									
Elemento	Cantidad	área (m2)	h (m)	Vol (m3)	Relleno				
Zapatas	1	90.39	1.50	135.59	72.312	2			
•									
Cimiento corrido	1	27.74	1.50	41.61	22.1904	+			
				177.19	94.50				
Excavación masiva									
Elemento	Cantidad	área (m2)	h (m)	Vol (m3)					
Semisótano	1	306.00	1.40	428.40	_				
	-	550.00	2.40	428.40					
				420.40					
Vigas de conexión									
Eje	Elemento	Cantidad	I (m)	a (m)	h (m)	Vol (m3)	Per (m)	Enc (m2)	
Eje 2-2 y Eje 9-9	VC	2	3.85	0.25	0.65	1.25	1.3	10.01	
		1							
Eje 5-5	VC		3.85	0.25	0.65	0.63	1.3	5.01	
Eje C-C	VC	2	5.15	0.25	0.65	1.67	1.3	13.39	
Eje D-D	VC	3	3.10	0.25	0.65	1.51	1.3	12.09	
Eje 4-4 y Eje 7-7	VC	2	5.05	0.25	0.65	1.64	1.3	13.13	
Eje E-E	VC	2	3.60	0.25	0.65	1.17	1.3	9.36	
	VC								
		2	4.20	0.25	0.65	1.37	1.3	10.92	
Eje G-G									
Lje d-d						9.24		73.91	
Lje d-d						9.24		73.91	
						9.24		73.91	
Placas de concreto		Cantidad	I (m)	a (m)	h (m)		Per (m)		
Placas de concreto Eje	Elemento	Cantidad 2	I (m)	a (m)	h (m)	Vol (m3)	Per (m)	Enc (m2)	
Placas de concreto Eje Eje A-A	Elemento PL-01	2	2.25	0.20	14.40	Vol (m3)	4.75	Enc (m2) 132.60	
Placas de concreto Eje Eje A-A Eje E-E	Elemento PL-01 PL-02	2 1	2.25 3.55	0.20 0.25	14.40 14.40	Vol (m3) 12.96 12.78	4.75 7.6	Enc (m2) 132.60 101.69	
Placas de concreto Eje Eje A-A Eje E-E	Elemento PL-01	2	2.25	0.20	14.40	Vol (m3)	4.75	Enc (m2) 132.60	
Placas de concreto Eje Eje A-A Eje E-E Eje 4-4 y Eje 6-6	Elemento PL-01 PL-02	2 1	2.25 3.55	0.20 0.25	14.40 14.40	Vol (m3) 12.96 12.78	4.75 7.6	Enc (m2) 132.60 101.69	
Placas de concreto Eje Eje A-A Eje E-E Eje 4-4 y Eje 6-6	Elemento PL-01 PL-02 PL-02	2 1 1	2.25 3.55 5.90	0.20 0.25 0.15	14.40 14.40 14.40	Vol (m3) 12.96 12.78 12.74 28.05	4.75 7.6 11.8	Enc (m2) 132.60 101.69 169.92 280.98	
Placas de concreto Eje Eje A-A Eje E-E Eje 4-4 y Eje 6-6	Elemento PL-01 PL-02 PL-02	2 1 1	2.25 3.55 5.90	0.20 0.25 0.15	14.40 14.40 14.40	Vol (m3) 12.96 12.78 12.74	4.75 7.6 11.8	Enc (m2) 132.60 101.69 169.92	
Placas de concreto Eje Eje A-A Eje E-E Eje 4-4 y Eje 6-6 Caja de ascensor	Elemento PL-01 PL-02 PL-02	2 1 1	2.25 3.55 5.90	0.20 0.25 0.15	14.40 14.40 14.40	Vol (m3) 12.96 12.78 12.74 28.05	4.75 7.6 11.8	Enc (m2) 132.60 101.69 169.92 280.98	
Placas de concreto Eje Eje A-A Eje E-E Eje 4-4 y Eje 6-6 Caja de ascensor	Elemento PL-01 PL-02 PL-02 PL-03	2 1 1 1	2.25 3.55 5.90 7.50	0.20 0.25 0.15 0.20	14.40 14.40 14.40 18.70	Vol (m3) 12.96 12.78 12.74 28.05 66.53	4.75 7.6 11.8 15.4	Enc (m2) 132.60 101.69 169.92 280.98 685.19	
Placas de concreto Eje Eje A-A Eje E-E Eje 4-4 y Eje 6-6 Caja de ascensor	Elemento PL-01 PL-02 PL-02 PL-03	2 1 1 1	2.25 3.55 5.90 7.50	0.20 0.25 0.15 0.20	14.40 14.40 14.40	Vol (m3) 12.96 12.78 12.74 28.05 66.53 Vol (m3)	4.75 7.6 11.8	Enc (m2) 132.60 101.69 169.92 280.98	
Placas de concreto Eje Eje A-A Eje E-E Eje 4-4 y Eje 6-6 Caja de ascensor Placas de semisótano Eje	Elemento PL-01 PL-02 PL-02 PL-03	2 1 1 1	2.25 3.55 5.90 7.50	0.20 0.25 0.15 0.20	14.40 14.40 14.40 18.70	Vol (m3) 12.96 12.78 12.74 28.05 66.53	4.75 7.6 11.8 15.4	Enc (m2) 132.60 101.69 169.92 280.98 685.19	
Placas de concreto Eje Eje A-A Eje E-E Eje 4-4 y Eje 6-6 Caja de ascensor Placas de semisótano Eje Eje A-A	Elemento PL-01 PL-02 PL-02 PL-03	2 1 1 1	2.25 3.55 5.90 7.50	0.20 0.25 0.15 0.20	14.40 14.40 14.40 18.70 h (m)	Vol (m3) 12.96 12.78 12.74 28.05 66.53 Vol (m3)	4.75 7.6 11.8 15.4 Per (m)	Enc (m2) 132.60 101.69 169.92 280.98 685.19 Enc (m2)	
Placas de concreto Eje Eje A-A Eje E-E Eje 4-4 y Eje 6-6 Caja de ascensor Placas de semisótano Eje Eje A-A Eje 1-1	Elemento PL-01 PL-02 PL-02 PL-03 Elemento M-01 Corte 1-1	2 1 1 1 Cantidad 1 2	2.25 3.55 5.90 7.50 I (m) 7.15 22.55	0.20 0.25 0.15 0.20 a (m) 0.20 0.15	14.40 14.40 14.40 18.70 h (m) 3.60 3.60	Vol (m3) 12.96 12.78 12.74 28.05 66.53 Vol (m3) 5.15 24.35	4.75 7.6 11.8 15.4 Per (m) 14.3 45.1	Enc (m2) 132.60 101.69 169.92 280.98 685.19 Enc (m2) 50.05 315.70	
Placas de concreto Eje Eje A-A Eje E-E Eje 4-4 y Eje 6-6 Caja de ascensor Placas de semisótano Eje Eje A-A Eje 1-1	Elemento PL-01 PL-02 PL-02 PL-03 Elemento M-01	2 1 1 1 Cantidad	2.25 3.55 5.90 7.50	0.20 0.25 0.15 0.20 a (m) 0.20	14.40 14.40 14.40 18.70 h (m) 3.60	Vol (m3) 12.96 12.78 12.74 28.05 66.53 Vol (m3) 5.15 24.35 3.97	4.75 7.6 11.8 15.4 Per (m)	Enc (m2) 132.60 101.69 169.92 280.98 685.19 Enc (m2) 50.05 315.70 51.99	
Placas de concreto Eje Eje A-A Eje E-E Eje 4-4 y Eje 6-6 Caja de ascensor Placas de semisótano Eje Eje A-A Eje 1-1	Elemento PL-01 PL-02 PL-02 PL-03 Elemento M-01 Corte 1-1	2 1 1 1 Cantidad 1 2	2.25 3.55 5.90 7.50 I (m) 7.15 22.55	0.20 0.25 0.15 0.20 a (m) 0.20 0.15	14.40 14.40 14.40 18.70 h (m) 3.60 3.60	Vol (m3) 12.96 12.78 12.74 28.05 66.53 Vol (m3) 5.15 24.35	4.75 7.6 11.8 15.4 Per (m) 14.3 45.1	Enc (m2) 132.60 101.69 169.92 280.98 685.19 Enc (m2) 50.05 315.70	
Placas de concreto Eje Eje A-A Eje E-E Eje 4-4 y Eje 6-6 Caja de ascensor Placas de semisótano Eje Eje A-A Eje I-1 Eje H-H	Elemento PL-01 PL-02 PL-02 PL-03 Elemento M-01 Corte 1-1	2 1 1 1 Cantidad 1 2	2.25 3.55 5.90 7.50 I (m) 7.15 22.55	0.20 0.25 0.15 0.20 a (m) 0.20 0.15	14.40 14.40 14.40 18.70 h (m) 3.60 3.60	Vol (m3) 12.96 12.78 12.74 28.05 66.53 Vol (m3) 5.15 24.35 3.97	4.75 7.6 11.8 15.4 Per (m) 14.3 45.1	Enc (m2) 132.60 101.69 169.92 280.98 685.19 Enc (m2) 50.05 315.70 51.99	
Placas de concreto Eje Eje A-A Eje E-E Eje 4-4 y Eje 6-6 Caja de ascensor Placas de semisótano Eje Eje A-A Eje 1-1 Eje H-H	Elemento PL-01 PL-02 PL-02 PL-03 Elemento M-01 Corte 1-1 M-02	2 1 1 1 Cantidad 1 2	2.25 3.55 5.90 7.50 I (m) 7.15 22.55 7.35	0.20 0.25 0.15 0.20 a (m) 0.20 0.15	14.40 14.40 14.40 18.70 h (m) 3.60 3.60	Vol (m3) 12.96 12.78 12.74 28.05 66.53 Vol (m3) 5.15 24.35 3.97	4.75 7.6 11.8 15.4 Per (m) 14.3 45.1	Enc (m2) 132.60 101.69 169.92 280.98 685.19 Enc (m2) 50.05 315.70 51.99	
Placas de concreto Eje Eje A-A Eje E-E Eje 4-4 y Eje 6-6 Caja de ascensor Placas de semisótano Eje Eje A-A Eje 1-1 Eje H-H Columnas de concreto	Elemento PL-01 PL-02 PL-02 PL-03 Elemento M-01 Corte 1-1	2 1 1 1 Cantidad 1 2	2.25 3.55 5.90 7.50 I (m) 7.15 22.55 7.35	0.20 0.25 0.15 0.20 a (m) 0.20 0.15	14.40 14.40 14.40 18.70 h (m) 3.60 3.60	Vol (m3) 12.96 12.78 12.74 28.05 66.53 Vol (m3) 5.15 24.35 3.97	4.75 7.6 11.8 15.4 Per (m) 14.3 45.1	Enc (m2) 132.60 101.69 169.92 280.98 685.19 Enc (m2) 50.05 315.70 51.99	
Placas de concreto Eje Eje A-A Eje E-E Eje 4-4 y Eje 6-6 Caja de ascensor Placas de semisótano Eje Eje A-A Eje 1-1 Eje H-H Columnas de concreto	Elemento PL-01 PL-02 PL-02 PL-03 Elemento M-01 Corte 1-1 M-02 Elemento	2 1 1 1 2 1 Cantidad	2.25 3.55 5.90 7.50 I (m) 7.15 22.55 7.35	0.20 0.25 0.15 0.20 a (m) 0.20 0.15 0.15	14.40 14.40 14.40 18.70 h (m) 3.60 3.60 3.60	Vol (m3) 12.96 12.78 12.74 28.05 66.53 Vol (m3) 5.15 24.35 3.97 33.47 Vol (m3)	4.75 7.6 11.8 15.4 Per (m) 14.3 45.1 14.85	Enc (m2) 132.60 101.69 169.92 280.98 685.19 Enc (m2) 50.05 315.70 51.99 417.74 Enc (m2)	
Placas de concreto Eje Eje A-A Eje E-E Eje 4-4 y Eje 6-6 Caja de ascensor Placas de semisótano Eje Eje A-A Eje 1-1 Eje H-H Columnas de concreto Eje Eje B-B	Elemento PL-01 PL-02 PL-02 PL-03 Elemento M-01 Corte 1-1 M-02 Elemento C-01	2 1 1 1 2 1 Cantidad 1 2 1	2.25 3.55 5.90 7.50 I (m) 7.15 22.55 7.35	0.20 0.25 0.15 0.20 a (m) 0.25 0.15	14.40 14.40 14.40 18.70 h (m) 3.60 3.60 3.60 14.40	Vol (m3) 12.96 12.78 12.74 28.05 66.53 Vol (m3) 5.15 24.35 3.97 33.47 Vol (m3) 2.88	4.75 7.6 11.8 15.4 Per (m) 14.3 45.1 14.85	Enc (m2) 132.60 101.69 169.92 280.98 685.19 Enc (m2) 50.05 315.70 51.99 417.74 Enc (m2) 35.44	
Placas de concreto Eje Eje A-A Eje E-E Eje 4-4 y Eje 6-6 Caja de ascensor Placas de semisótano Eje Eje A-A Eje H-H Columnas de concreto Eje Eje B-B Eje 1-1 y Eje 10-10	Elemento PL-01 PL-02 PL-02 PL-03 Elemento M-01 Corte 1-1 M-02 Elemento C-01 C-02	2 1 1 1 2 1 Cantidad 1 2 1	2.25 3.55 5.90 7.50 I (m) 7.15 22.55 7.35	0.20 0.25 0.15 0.20 a (m) 0.20 0.15 0.15	14.40 14.40 14.40 18.70 h (m) 3.60 3.60 3.60 14.40 14.40	Vol (m3) 12.96 12.78 12.74 28.05 66.53 Vol (m3) 5.15 24.35 3.97 33.47 Vol (m3) 2.88 17.28	4.75 7.6 11.8 15.4 Per (m) 14.3 45.1 14.85 Per (m) 1.3 1.4	Enc (m2) 132.60 101.69 169.92 280.98 685.19 Enc (m2) 50.05 315.70 51.99 417.74 Enc (m2) 35.44 152.08	
Placas de concreto Eje Eje A-A Eje E-E Eje 4-4 y Eje 6-6 Caja de ascensor Placas de semisótano Eje Eje A-A Eje 1-1 Eje H-H Columnas de concreto Eje Eje B-B Eje 1-1 y Eje 10-10 Eje C-C	Elemento PL-01 PL-02 PL-02 PL-03 Elemento M-01 Corte 1-1 M-02 Elemento C-01 C-02 C-03	2 1 1 1 2 1 Cantidad 1 2 1	2.25 3.55 5.90 7.50 I (m) 7.15 22.55 7.35	0.20 0.25 0.15 0.20 a (m) 0.20 0.15 0.15	14.40 14.40 14.40 18.70 h (m) 3.60 3.60 3.60 14.40 14.40 14.40	Vol (m3) 12.96 12.78 12.74 28.05 66.53 Vol (m3) 5.15 24.35 3.97 33.47 Vol (m3) 2.88 17.28 1.80	Per (m) 14.3 45.1 14.85 Per (m) 1.3 1.4 1.35	Enc (m2) 132.60 101.69 169.92 280.98 685.19 Enc (m2) 50.05 315.70 51.99 417.74 Enc (m2) 35.44 152.08 17.94	
Placas de concreto Eje Eje A-A Eje E-E Eje 4-4 y Eje 6-6 Caja de ascensor Placas de semisótano Eje Eje A-A Eje 1-1 Eje H-H Columnas de concreto Eje Eje B-B Eje 1-1 y Eje 10-10 Eje C-C	Elemento PL-01 PL-02 PL-02 PL-03 Elemento M-01 Corte 1-1 M-02 Elemento C-01 C-02	2 1 1 1 2 1 Cantidad 1 2 1	2.25 3.55 5.90 7.50 I (m) 7.15 22.55 7.35	0.20 0.25 0.15 0.20 a (m) 0.20 0.15 0.15	14.40 14.40 14.40 18.70 h (m) 3.60 3.60 3.60 14.40 14.40	Vol (m3) 12.96 12.78 12.74 28.05 66.53 Vol (m3) 5.15 24.35 3.97 33.47 Vol (m3) 2.88 17.28	4.75 7.6 11.8 15.4 Per (m) 14.3 45.1 14.85 Per (m) 1.3 1.4	Enc (m2) 132.60 101.69 169.92 280.98 685.19 Enc (m2) 50.05 315.70 51.99 417.74 Enc (m2) 35.44 152.08	
Placas de concreto Eje Eje A-A Eje E-E Eje 4-4 y Eje 6-6 Caja de ascensor Placas de semisótano Eje Eje A-A Eje 1-1 Eje H-H Columnas de concreto Eje Eje B-B Eje 1-1 y Eje 10-10 Eje C-C Eje B-B	Elemento PL-01 PL-02 PL-02 PL-03 Elemento M-01 Corte 1-1 M-02 Elemento C-01 C-02 C-03 C-04	2 1 1 1 2 1 Cantidad 2 2 1	2.25 3.55 5.90 7.50 I (m) 7.15 22.55 7.35 I (m) 0.40 0.60 0.50 0.75	0.20 0.25 0.15 0.20 a (m) 0.20 0.15 0.15 0.25 0.25 0.25	14.40 14.40 14.40 18.70 h (m) 3.60 3.60 3.60 3.60 14.40 14.40 14.40 14.40	Vol (m3) 12.96 12.78 12.74 28.05 66.53 Vol (m3) 5.15 24.35 3.97 33.47 Vol (m3) 2.88 17.28 1.80 5.40	Per (m) 14.3 45.1 14.85 Per (m) 1.3 1.4 1.35 1.7	Enc (m2) 132.60 101.69 169.92 280.98 685.19 Enc (m2) 50.05 315.70 51.99 417.74 Enc (m2) 35.44 152.08 17.94 45.46	
Placas de concreto Eje Eje A-A Eje E-E Eje 4-4 y Eje 6-6 Caja de ascensor Placas de semisótano Eje Eje A-A Eje 1-1 Eje H-H Columnas de concreto Eje Eje B-B Eje 1-1 y Eje 10-10 Eje C-C Eje B-B Eje B-B	Elemento PL-01 PL-02 PL-02 PL-03 Elemento M-01 Corte 1-1 M-02 Elemento C-01 C-02 C-03 C-04 C-05	2 1 1 1 2 1 Cantidad 2 8 1 1 2	2.25 3.55 5.90 7.50 I (m) 7.15 22.55 7.35 I (m) 0.40 0.60 0.50 0.75 0.70	0.20 0.25 0.15 0.20 a (m) 0.25 0.15 0.25 0.25 0.25 0.25	14.40 14.40 18.70 h (m) 3.60 3.60 3.60 14.40 14.40 14.40 14.40 14.40	Vol (m3) 12.96 12.78 12.74 28.05 66.53 Vol (m3) 5.15 24.35 3.97 33.47 Vol (m3) 2.88 17.28 1.80 5.40 5.04	Per (m) 14.3 45.1 14.85 Per (m) 1.3 1.4 1.35 1.7 1.9	Enc (m2) 132.60 101.69 169.92 280.98 685.19 Enc (m2) 50.05 315.70 51.99 417.74 Enc (m2) 35.44 152.08 17.94 45.46 50.92	
Placas de concreto Eje Eje A-A Eje E-E Eje 4-4 y Eje 6-6 Caja de ascensor Placas de semisótano Eje Eje B-A Eje H-H Columnas de concreto Eje Eje B-B Eje 1-1 y Eje 10-10 Eje C-C Eje B-B Eje B-B Eje B-B Eje B-B Eje B-B Eje B-B	Elemento PL-01 PL-02 PL-02 PL-03 Elemento M-01 Corte 1-1 M-02 Elemento C-01 C-02 C-03 C-04 C-05 C-06	2 1 1 1 2 1 Cantidad 2 8 1 2 2 1	2.25 3.55 5.90 7.50 I (m) 7.15 22.55 7.35 I (m) 0.40 0.60 0.50 0.75 0.70 0.35	0.20 0.25 0.15 0.20 a (m) 0.25 0.15 0.25 0.25 0.25 0.25 0.25	14.40 14.40 18.70 h (m) 3.60 3.60 3.60 14.40 14.40 14.40 14.40 14.40 14.40	Vol (m3) 12.96 12.78 12.74 28.05 66.53 Vol (m3) 5.15 24.35 3.97 33.47 Vol (m3) 2.88 17.28 1.80 5.40 5.04 1.26	Per (m) 14.3 45.1 14.85 Per (m) 1.3 1.4 1.3 1.7 1.9 1.2	Enc (m2) 132.60 101.69 169.92 280.98 685.19 Enc (m2) 50.05 315.70 51.99 417.74 Enc (m2) 35.44 152.08 17.94 45.46 50.92 16.33	
Placas de concreto Eje Eje A-A Eje E-E Eje 4-4 y Eje 6-6 Caja de ascensor Placas de semisótano Eje Eje A-A Eje H-H Columnas de concreto Eje Eje B-B Eje 1-1 y Eje 10-10 Eje C-C Eje B-B Eje B-B Eje B-B Eje B-B Eje B-B Eje 5-5 Eje D-D	Elemento PL-01 PL-02 PL-02 PL-03 Elemento M-01 Corte 1-1 M-02 Elemento C-01 C-02 C-03 C-04 C-05 C-06 C-07	2 1 1 1 2 1 Cantidad 2 8 1 2 2 1 2 2 1	2.25 3.55 5.90 7.50 1 (m) 7.15 22.55 7.35 1 (m) 0.40 0.60 0.50 0.75 0.70	0.20 0.25 0.15 0.20 a (m) 0.25 0.15 0.15 0.25 0.25 0.25 0.25 0.25 0.25 0.25	14.40 14.40 18.70 h (m) 3.60 3.60 3.60 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40	Vol (m3) 12.96 12.78 12.74 28.05 66.53 Vol (m3) 5.15 24.35 3.97 33.47 Vol (m3) 2.88 17.28 1.80 5.40 5.04 1.26 4.03	Per (m) 14.3 45.1 14.85 Per (m) 1.3 1.4 1.35 1.7 1.9 1.2 1.8	Enc (m2) 132.60 101.69 169.92 280.98 685.19 Enc (m2) 50.05 315.70 51.99 417.74 Enc (m2) 35.44 152.08 17.94 45.46 50.92 16.33 48.24	
Placas de concreto Eje Eje A-A Eje E-E Eje 4-4 y Eje 6-6 Caja de ascensor Placas de semisótano Eje Eje A-A Eje H-H Columnas de concreto Eje Eje B-B Eje 1-1 y Eje 10-10 Eje C-C Eje B-B Eje B-B Eje B-B Eje 5-5 Eje D-D	Elemento PL-01 PL-02 PL-02 PL-03 Elemento M-01 Corte 1-1 M-02 Elemento C-01 C-02 C-03 C-04 C-05 C-06	2 1 1 1 2 1 Cantidad 2 8 1 2 2 1	2.25 3.55 5.90 7.50 I (m) 7.15 22.55 7.35 I (m) 0.40 0.60 0.50 0.75 0.70 0.35	0.20 0.25 0.15 0.20 a (m) 0.25 0.15 0.25 0.25 0.25 0.25 0.25	14.40 14.40 18.70 h (m) 3.60 3.60 3.60 14.40 14.40 14.40 14.40 14.40 14.40	Vol (m3) 12.96 12.78 12.74 28.05 66.53 Vol (m3) 5.15 24.35 3.97 33.47 Vol (m3) 2.88 17.28 1.80 5.40 5.04 1.26	Per (m) 14.3 45.1 14.85 Per (m) 1.3 1.4 1.3 1.7 1.9 1.2	Enc (m2) 132.60 101.69 169.92 280.98 685.19 Enc (m2) 50.05 315.70 51.99 417.74 Enc (m2) 35.44 152.08 17.94 45.46 50.92 16.33	
Placas de concreto Eje Eje A-A Eje E-E Eje 4-4 y Eje 6-6 Caja de ascensor Placas de semisótano Eje Eje A-A Eje 1-1 Eje H-H Columnas de concreto Eje Eje B-B Eje 1-1 y Eje 10-10 Eje C-C Eje B-B Eje B-B Eje B-B Eje B-B Eje B-B Eje B-B Eje S-5 Eje D-D Eje 5-5	Elemento PL-01 PL-02 PL-02 PL-03 Elemento M-01 Corte 1-1 M-02 Elemento C-01 C-02 C-03 C-04 C-05 C-06 C-07 C-08	2 1 1 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2	2.25 3.55 5.90 7.50 1 (m) 7.15 22.55 7.35 1 (m) 0.40 0.60 0.50 0.75 0.75 0.70 0.35	0.20 0.25 0.15 0.20 a (m) 0.20 0.15 0.15 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.2	14.40 14.40 18.70 h (m) 3.60 3.60 3.60 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 3.60	Vol (m3) 12.96 12.78 12.74 28.05 66.53 Vol (m3) 5.15 24.35 3.97 33.47 Vol (m3) 2.88 17.28 1.80 5.40 5.04 1.26 4.03 0.32	Per (m) 14.3 45.1 14.85 Per (m) 1.3 1.4 1.35 1.7 1.9 1.2 1.8 1.2	Enc (m2) 132.60 101.69 169.92 280.98 685.19 Enc (m2) 50.05 315.70 51.570 51.94 417.74 Enc (m2) 417.94 45.46 50.92 16.33 48.24 4.08	
Placas de concreto Eje Eje A-A Eje E-E Eje 4-4 y Eje 6-6 Caja de ascensor Placas de semisótano Eje Eje A-A Eje 1-1 Eje H-H Columnas de concreto Eje Eje B-B Eje 1-1 y Eje 10-10 Eje E-B Eje 5-5 Eje D-D Eje 5-5 Eje D-D Eje 5-5 Eje 1-1 y Eje 10-10	Elemento PL-01 PL-02 PL-02 PL-03 Elemento M-01 Corte 1-1 M-02 Elemento C-01 C-02 C-03 C-04 C-05 C-06 C-07 C-08 CC-08 CC-01	2 1 1 1 2 1 Cantidad 2 8 1 2 2 2 1 2 2 1	2.25 3.55 5.90 7.50 1 (m) 7.15 22.55 7.35 1 (m) 0.40 0.60 0.50 0.75 0.70 0.35 0.70	0.20 0.25 0.15 0.20 a (m) 0.20 0.15 0.15 0.15 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.	14.40 14.40 14.40 18.70 h (m) 3.60 3.60 3.60 3.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40	Vol (m3) 12.96 12.78 12.74 28.05 66.53 Vol (m3) 5.15 24.35 3.97 33.47 Vol (m3) 17.28 1.80 5.40 5.04 1.26 4.03 0.32 5.18	Per (m) 14.3 45.1 14.85 Per (m) 1.3 1.4 1.35 1.7 1.9 1.2 0.6	Enc (m2) 132.60 101.69 169.92 280.98 685.19 Enc (m2) 50.05 315.70 51.99 417.74 Enc (m2) 35.44 152.08 17.94 45.46 50.92 16.33 48.24 4.08 66.72	
Placas de concreto Eje Eje A-A Eje E-E Eje 4-4 y Eje 6-6 Caja de ascensor Placas de semisótano Eje Eje A-A Eje 1-1 Eje H-H Columnas de concreto Eje Eje B-B Eje 1-1 y Eje 10-10 Eje B-B Eje B-B Eje 5-5 Eje D-D Eje 5-5 Eje 1-1 y Eje 10-10 Eje 5-5 Eje 1-1 y Eje 10-10 Eje 1-1 y Eje 10-10 Eje 1-1 y Eje 10-10	Elemento PL-01 PL-02 PL-02 PL-03 Elemento M-01 Corte 1-1 M-02 Elemento C-01 C-02 C-03 C-04 C-05 C-06 C-07 C-08 CC-01 CC-01 CC-01 CC-01	2 1 1 1 2 1 2 1 2 8 1 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 1 2 2 2 2 1 2	2.25 3.55 5.90 7.50 1 (m) 7.15 22.55 7.35 1 (m) 0.40 0.60 0.50 0.75 0.70 0.35 0.70 0.35 0.30	0.20 0.25 0.15 0.20 a (m) 0.25 0.15 0.15 0.15 0.25 0.25 0.25 0.25 0.25 0.20 0.25 0.25	14.40 14.40 18.70 h (m) 3.60 3.60 3.60 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40	Vol (m3) 12.96 12.78 12.74 28.05 66.53 Vol (m3) 5.15 24.35 3.97 33.47 Vol (m3) 2.88 17.28 1.80 5.40 5.40 1.26 4.03 0.32 5.18 1.30	Per (m) 14.3 45.1 14.85 Per (m) 1.3 1.4 1.3 1.7 1.9 1.2 1.8 1.2 0.6 0.75	Enc (m2) 132.60 101.69 169.92 280.98 685.19 Enc (m2) 50.05 315.70 51.99 417.74 Enc (m2) 35.44 152.08 17.94 45.46 50.92 16.33 48.24 4.08 66.72 21.00	
Placas de concreto Eje Eje A-A Eje E-E Eje 4-4 y Eje 6-6 Caja de ascensor Placas de semisótano Eje Eje A-A Eje 1-1	Elemento PL-01 PL-02 PL-02 PL-03 Elemento M-01 Corte 1-1 M-02 Elemento C-01 C-02 C-03 C-04 C-05 C-06 C-07 C-08 CC-08 CC-01	2 1 1 1 2 1 Cantidad 2 8 1 2 2 2 1 2 2 1	2.25 3.55 5.90 7.50 1 (m) 7.15 22.55 7.35 1 (m) 0.40 0.60 0.50 0.75 0.70 0.35 0.70	0.20 0.25 0.15 0.20 a (m) 0.20 0.15 0.15 0.15 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.	14.40 14.40 14.40 18.70 h (m) 3.60 3.60 3.60 3.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40 14.40	Vol (m3) 12.96 12.78 12.74 28.05 66.53 Vol (m3) 5.15 24.35 3.97 33.47 Vol (m3) 17.28 1.80 5.40 5.04 1.26 4.03 0.32 5.18	Per (m) 14.3 45.1 14.85 Per (m) 1.3 1.4 1.35 1.7 1.9 1.2 0.6	Enc (m2) 132.60 101.69 169.92 280.98 685.19 Enc (m2) 50.05 315.70 51.99 417.74 Enc (m2) 35.44 152.08 17.94 45.46 50.92 16.33 48.24 4.08 66.72	

METRADOS

EDIFICIO MULTIFAMILIAR DE 4 PISOS Y 1 SEMISÓTANO EN EL DISTRITO DE VILLA EL SALVADOR

METRADO DE ELEMENTOS DE CONCRETO, MUROS, TABIQUES Y ARQUITECTURA EN GENERAL

					, .					
Vigas de concreto										
Eje	Elemento	Cantidad	b (m)	h (m)	L (m)	Vol (m3)	E(losa)	Per (m)	Enc (m2)	_
Eje B-B	VT-01	5	0.25	0.50	7.06	4.41	0.20	1.05	7.41	Viga exterior
Eje B-B	VT-01	5	0.25	0.50	1.60	1.00	0.20	0.85	1.36	Viga interior
Eje C-C	VT-02	5	0.25	0.50	10.26	6.41	0.20	0.85	8.72	Viga interior
Eje D-D	VT-03	5	0.2	0.50	6.30	3.15	0.20	1.00	6.30	Viga exterior
Eje D-D	VT-03	5	0.2	0.50	3.05	1.53	0.20	0.80	2.44	Viga interior
Eje E-E	VT-04	5	0.25	0.50	7.25	4.53	0.20	0.85	6.16	Viga interior
Eje G-G	VT-05	5	0.25	0.50	8.40	5.25	0.20	0.80	6.72	Solera exterior
Eje 1-1 y Eje 10-10	Corte 1-1	5	0.15	0.20	45.10	6.77	0.20	0.35	15.79	Viga exterior
Eje 2-2 y Eje 9-9	Corte 2-2	5	0.20	0.50	7.70	3.85	0.20	0.80	6.16	Viga interior
Eje 3-3 y Eje 8-8	Corte 3-3	5	0.20	0.50	9.70	4.85	0.20	1.00	9.70	Viga exterior
Eje 4-4 y Eje 7-7	Corte 4-4	5	0.25	0.50	10.10	6.31	0.20	0.85	8.59	Viga interior
Eje 4-4 y Eje 6-6	Corte 5-5	5	0.15	0.50	2.50	0.94	0.20	0.95	2.38	Viga exterior
Eje F-F	Corte 6-6	5	0.25	0.50	2.00	1.25	0.20	1.05	2.10	Viga exterior
Eje 4-4 y Eje 6-6	Corte 7-7	5	0.20	0.50	2.60	1.30	0.20	1.00	2.60	Viga exterior
Eje H-H	Corte 8-8	5	0.20	0.20	9.30	1.86	0.20	0.40	3.72	Viga exterior
Eje F-F	Corte 9-9	5	0.30	0.20	2.40	0.72	0.20	0.50	1.20	Viga escalera
Eje 5-5	Corte 10-10	1	0.20	0.50	3.80	0.38	0.20	0.80	3.04	Viga interior
Eje 5-5	Corte 11-11	5	0.20	0.20	4.85	0.97	0.20	0.00	0.00	Solera interior

55.48

94.38

Losa	ali	ge	ra	da

LUSA aligeraua							
Eje	Elemento	Cantidad	I (m)	b (m)	Enc (m2)	Vol (m3)	Ladrillos (unid
Entre Eje A-A y B-B	losa e= 0.20m	10	3.85	1.90	73.15	6.40	609.3395
Entre Eje B-B y C-C	losa e= 0.20m	10	4.85	3.35	162.48	14.22	1353.417
Entre Eje B-B y C-C	losa e= 0.20m	10	4.85	2.18	105.73	9.25	880.7309
Entre Eje C-C y D-D	losa e= 0.20m	5	11.70	2.50	146.25	12.80	1218.263
Entre Eje D-D y E-E	losa e= 0.20m	5	5.05	4.05	102.26	8.95	851.8466
Entre Eje D-D y E-E	losa e= 0.20m	5	5.05	4.10	103.53	9.06	862.3633
Entre Eje E-E y G-G	losa e= 0.20m	5	6.35	4.95	157.16	13.75	1309.164
Entre Eje G-G y H-H	losa e= 0.20m	5	1.25	4.95	30.94	2.71	257.7094
Entre Eje E-E y F-F	losa e= 0.20m	5	4.40	4.05	89.10	7.80	742.203
Entre Eje F-F y G-G	losa e= 0.20m	5	4.35	1.95	42.41	3.71	353.2961
Entre Eje D-D y F-F	losa e= 0.20m	5	4.35	1.25	27.19	2.38	226.4719
					1040.19	91.02	8664.80

Col	uı	mı	ıе	ta	S

Eje	Elemento	Cantidad I (ı	m) a	(m)	h (m)	Vol (m3)	Per (m)	Enc (m2)
Entre Eje A-A y B-B	Columneta	184	0.20	0.10	2.50	9.20	0.5	230.00
						0.20		220.00

Muros y Tabiques

Eje	Elemento	Cantidad	I (m)	h (m)	Área (m2)
Muro de cabeza	Muro e=0.25m	5	3.80	2.50	47.50
Muro de soga	Muro e=0.15m	8	22.55	2.50	451.00
Tabiques de canto	Tabiques e=0.10m	8	21.62	2.50	432.40
Parapetos azotea	Muro e=0.15m	1	64.50	1.10	70.95
					930.90

Escalera	a

Elemento	Cantidad	l (m)		Área (m2)	Vol (m3)	Per (m)	Enc (m2)
Escalera		10	1.2	0.7027	8.4324	4.51	54.12
					8 43		54 12

Revoques y Revestimientos

Elemento	Area (m2)
Tarrajeo de muros interiores	1434.25
Tarrajeo de muros exteriores	286.85
Tarrajeo de columnas y placas	232.68
Tarrajeo de vigas	520.0963

<u>Pavimentos</u>

Elemento	Área (m2)
Piso sotano	350
Vereda	28.8
	378.80

<u>Puertas</u>

N°	Cantidad	Ancho Alto		Área (m2)
P-01	8.00	1.00	2.10	16.80
P-02	16.00	0.75	2.10	25.20
P-03	48.00	0.80	2.10	80.64
P-04	8.00	0.70	2.10	11.76
				134.40

METRADOS

EDIFICIO MULTIFAMILIAR DE 4 PISOS Y 1 SEMISÓTANO EN EL DISTRITO DE VILLA EL SALVADOR

METRADO DE ELEMENTOS DE CONCRETO, MUROS, TABIQUES Y ARQUITECTURA EN GENERAL

Mamparas					
N°	Cantidad	Ar	ncho	Alto	Área (m2)
M-01		8.00	4.60	2.10	77.28
M-02		16.00	4.70	2.10	157.92
					235.20
Ventanas					

Ventanas				
N°	Cantidad	Ancho	Alto	Área (m2)
V-01	8.00	0.30	0.30	0.72
V-02	16.00	0.85	0.30	4.08
V-03	8.00	1.10	0.30	2.64
V-04	8.00	1.40	0.30	3.36
V-05	8.00	1.20	0.30	2.88
V-06	8.00	1.65	0.30	3.96
V-07	8.00	0.35	0.30	0.84
V-08	8.00	0.95	1.10	8.36
V-09	8.00	2.15	1.10	18.92
V-10	8.00	2.20	0.30	5.28
V-11	8.00	1.43	1.10	12.58
V-12	8.00	1.33	1.10	11.70
V-13	8.00	2.25	1.10	19.80
				95.13

Aparatos y accesorios sanitarios

•	Cantidad
Inodoro	32
Lavatorio	32
Ducha	16
Toallero	16
Papelera	32
Jabonera	16

Cerrajería

	Cantidad
Bisagras	320
Cerradura puertas exteriores	8
Cerradura puertas interiores	72.00

METRADOS

EDIFICIO MULTIFAMILIAR DE 4 PISOS Y 1 SEMISÓTANO EN EL DISTRITO DE VILLA EL SALVADOR

METRADO DE ACERO

Za	<u>patas</u>	

Eje	Elemento	Cantidad	l (m)	a (m)	h (m)	N° Varillas	N° Varillas	ф	Long. Total
Eje B-B	C-01, C-04 y C-05	2	4.35	2.00	0.60	23.00	11.00	5/8	187.70
Eje 1-1	C-06	1	1.50	1.50	0.60	9.00	9.00	3/4	27.00
Eje A-A	PL-01	2	2.65	1.55	0.60	14.00	9.00	5/8	91.10
Eje 5-5	C-08	1	1.50	1.05	0.60	9.00	6.00	5/8	18.45
Eje C-C	C-02	8	1.80	1.20	0.60	10.00	7.00	5/8	196.80
Eje 5-5	C-03	1	1.75	1.50	0.60	10.00	9.00	3/4	30.75
Eje D-D	C-07	2	2.00	1.45	0.60	11.00	8.00	3/4	63.90
Eje E-Ey Eje H-H	PL-02 y PL-03	1	8.75	3.50	0.60	45.00	19.00	5/8	323.75
Eje E-Ey Eje H-H	PL-02 y PL-03	8	1.05	0.55	0.60	6.00	4.00	5/8	60.00

Vigas de conexión										[] ф3/8
Eje	Elemento	Cantidad	I (m)	a (m)	h (m)	N° Varillas	ф	Long. Total	Cant. Estri.	Long. Estri.
Eje 2-2 y Eje 9-9	VC	2	3.85	0.25	0.65	8	5/8	61.60	11	39.60
Eje 5-5	VC	1	3.85	0.25	0.65	8	5/8	30.80	11	19.80
Eje C-C	VC	2	5.15	0.25	0.65	8	5/8	82.40	16	57.60
Eje D-D	VC	3	3.10	0.25	0.65	8	5/8	74.40	9	48.60
Eje 4-4 y Eje 7-7	VC	2	5.05	0.25	0.65	8	5/8	80.80	15	54.00
Eje E-E	VC	2	3.60	0.25	0.65	8	5/8	57.60	10	36.00
Eje G-G	VC	2	4.20	0.25	0.65	8	5/8	67.20	12	43.20
								454.80		298.80

METRADOS

EDIFICIO MULTIFAMILIAR DE 4 PISOS Y 1 SEMISÓTANO EN EL DISTRITO DE VILLA EL SALVADOR

METRADO DE ACERO

					VIL IIIADO I	JE ACEINO					
Placas de concreto											[] φ3/8
Eje	Elemento	Cantidad	Pisos	l (m)	a (m)	h (m)	Cantidad	ф	Long. Total	Cant. Estri.	Long. Estri.
Eje A-A	PL-01	2	5	2.25	0.20	14.40	8.00	5/8	230.4	18	288
Eje A-A	PL-01	2	5	2.25	0.20	14.40	14.00	3/8	403.2	9	441
Eje E-E	PL-02	1	5	3.55	0.25	14.40	28.00	5/8	403.2	18	684
Eje 4-4 y Eje 6-6	PL-02	1	5	5.90	0.15	14.40	16.00	1/2	230.4	18	298.8
Eje E-E	PL-02	1	5	3.55	0.25	14.40	24.00	3/8	345.6	9	342
Eje 4-4 y Eje 6-6	PL-02	1	5	5.90	0.15	14.40	32.00	3/8	460.8	9	544.5
Caja de ascensor	PL-03	1	5	7.50	0.20	18.70	42.00	3/8	785.4	18	990
Caja de ascensor	PL-03	1	5	7.50	0.20	18.70	40.00	5/8	748	9	1350
											4938.30
Placas de semisótano											[] φ3/8
Eje	Elemento	Cantidad		l (m)	a (m)	h (m)	Cantidad	ф	Long. Total	Cant. Estri.	Long. Estri.
Eje A-A	M-01	1		7.15	0.20	3.60	70	1/2	252	34	243.1
Eje 1-1	Corte 1-1	2		22.55	0.15	3.60	224	1/2	1612.8	34	1533.4
Eje H-H	M-02	1		7.35	0.15	3.60	72	1/2	259.2	34	249.9
·											2026.40
Columnas de concreto											[] φ3/8
Eje	Elemento	Cantidad		l (m)	a (m)	h (m)	N° var	ф	Long. Total	Cant. Estri.	Long. Estri.
Eje B-B	C-01	2		0.40	0.25	14.40	8	5/8	230.4	18	46.8
Eje 1-1 y Eje 10-10	C-02	8		0.60	0.25	14.40	10	5/8	1152	18	244.8
Eie C-C	C-03	1		0.50	0.25	14.40	8	5/8	115.2	18	27
Eje B-B	C-04	2		0.75	0.25	14.40	12	5/8	345.6	18	72
Eje B-B	C-05	2		0.70	0.25	14.40	12	5/8	345.6	18	68.4
Eje 5-5	C-06	1		0.35	0.25	14.40	4	5/8	57.6	18	21.6
Eje D-D	C-07	2		0.70	0.20	14.40	12	5/8	345.6	18	64.8
Eje 5-5	C-08	1		0.35	0.25	3.60	8	5/8	28.8	18	21.6
Eje 1-1 y Eje 10-10	CC-01	8		0.30	0.15	14.40	4	1/2	460.8	26	187.2
Eje 1-1 y Eje 10-10	CC-01	2		0.30	0.15	14.40	4	1/2	115.2	26	46.8
Eje 5-5	CC-02	1		0.25	0.25	14.40	4	5/8	57.6	26	26
•											827.00

METRADOS

EDIFICIO MULTIFAMILIAR DE 4 PISOS Y 1 SEMISÓTANO EN EL DISTRITO DE VILLA EL SALVADOR

METRADO DE ACERO

Eje	Elemento	Cantidad	b (m)	h (m)	L (m)	N° var	ф	Long. Total	Cant. Estri.	[] φ3/8 Long. Estri.
Eje B-B	VT-01	5	0.25	0.50	7.06	5	5/8	176.5	56	420
Eje B-B	VT-01	5	0.25	0.50	1.60	5	5/8	40	14	105
Eje C-C	VT-02	5	0.25	0.50	10.26	5	5/8	256.5	58	435
Eje D-D	VT-03	5	0.2	0.50	6.30	4	5/8	126	42	294
Eje D-D	VT-03	5	0.2	0.50	3.05	4	5/8	61	21	147
Eje E-E	VT-04	5	0.25	0.50	7.25	4	5/8	145	46	345
Eje G-G	VT-05	5	0.25	0.50	8.40	4	5/8	168	48	360
Eje 1-1 y Eje 10-10	Corte 1-1	5	0.15	0.20	45.10	6	5/8	1353	320	1120
Eje 2-2 y Eje 9-9	Corte 2-2	5	0.20	0.50	7.70	4	5/8	154	46	322
Eje 3-3 y Eje 8-8	Corte 3-3	5	0.20	0.50	9.70	4	5/8	194	50	350
Eje 4-4 y Eje 7-7	Corte 4-4	5	0.25	0.50	10.10	4	5/8	202	56	420
Eje 4-4 y Eje 6-6	Corte 5-5	5	0.15	0.50	2.50	8	1/2	100	24	156
Eje F-F	Corte 6-6	5	0.25	0.50	2.00	4	5/8	40	15	112.5
Eje 4-4 y Eje 6-6	Corte 7-7	5	0.20	0.50	2.60	4	5/8	52	14	98
Eje H-H	Corte 8-8	5	0.20	0.20	9.30	4	5/8	186	26	104
Eje F-F	Corte 9-9	5	0.30	0.20	2.40	4	5/8	48	17	85
Eje 5-5	Corte 10-10	1	0.20	0.50	3.80	4	5/8	15.2	23	32.2
Eje 5-5	Corte 11-11	5	0.20	0.20	4.85	4	1/2	97	40	160
										5065.70

Losa aligerada							
Eje	Elemento	Cantidad	l (m)	b (m)	Enc (m2)	Long. Total φ 3/8	Long. Total φ 1/4
Entre Eje A-A y B-B	losa e= 0.20m	10	3.85	1.90	73.15	365.75	292.60
Entre Eje B-B y C-C	losa e= 0.20m	10	4.85	3.35	162.48	812.38	649.90
Entre Eje B-B y C-C	losa e= 0.20m	10	4.85	2.18	105.73	528.65	422.92
Entre Eje C-C y D-D	losa e= 0.20m	5	11.70	2.50	146.25	731.25	585.00
Entre Eje D-D y E-E	losa e= 0.20m	5	5.05	4.05	102.26	511.31	409.05
Entre Eje D-D y E-E	losa e= 0.20m	5	5.05	4.10	103.53	517.63	414.10
Entre Eje E-E y G-G	losa e= 0.20m	5	6.35	4.95	157.16	785.81	628.65
Entre Eje G-G y H-H	losa e= 0.20m	5	1.25	4.95	30.94	154.69	123.75
Entre Eje E-E y F-F	losa e= 0.20m	5	4.40	4.05	89.10	445.50	356.40
Entre Eje F-F y G-G	losa e= 0.20m	5	4.35	1.95	42.41	212.06	169.65
Entre Eje D-D y F-F	losa e= 0.20m	5	4.35	1.25	27.19	135.94	108.75
						0.00	4160.77

METRADOS

EDIFICIO MULTIFAMILIAR DE 4 PISOS Y 1 SEMISÓTANO EN EL DISTRITO DE VILLA EL SALVADOR METRADO DE ACERO

<u>Columnetas</u>										[] φ1/4	
Eje	Elemento	Cantidad	l (m)	a (m)	h (m)	N° var	ф	Long. Total	Cant. Estri.	Long. Estri.	
Entre Eje A-A y B-B	Columneta	184	0.20	0.10	2.50	4	3/8	1840	10	1104	_

<u>Escalera</u>							[] φ3/8
Elemento	Cantidad	l (m)	N° var	ф	Long. Total	Cant. Estri.	Long. Estri.
Escalera	10	1.2	10	3/8	450	42	504

Resumen de Acero

Elemento	ф 1/4	ф 3/8	ф 1/2	ф 5/8	ф 3/4	Peso
Zapatas	0.00	0.00	0.00	877.80	121.65	1634.23
Vigas de conexión	0.00	298.80	0.00	454.80	0.00	873.18
Columnas y Placas	0.00	9786.70	2930.40	4060.00	0.00	14694.49
Columnetas	1104.00	1840.00	0.00	0.00	0.00	1275.49
Vigas	0.00	5065.70	197.00	3217.20	0.00	8025.70
Losa Aligerada	4160.77	0.00	0.00	0.00	0.00	923.69
Escalera	0.00	954.00	0.00	0.00	0.00	534.24

Anexo 9: Análisis de Precios Unitarios

Presupuesto 001 E Subpresupuesto 001

EDIFICIO MULTIFAMILIAR DE 4 PISOS Y 1 SÓTANO EN EL DISTRITO DE VILLA EL SALVADOR ESTRUCTURA Y ARQUITECTURA

Fecha presupuesto 01/07/2019

Partida 01.01.01 CONTENEDOR OFICINA

Rendimiento día/DIA MO. EQ. Costo unitario directo por : día 20.00

Código Descripción Recurso
Equipos

Unidad Cuadrilla Cantidad Precio S/. Parcial S/.

03013500010009 CONTENEDOR DE OFICINAS día 1.0000 20.00

20.00

20.00

Partida 01.01.01.02 CONTENEDOR ALMACEN

Rendimiento día/DIA MO. EQ. Costo unitario directo por : día 15.46

Código Descripción Recurso Unidad Cuadrilla Cantidad Precio S/. Parcial S/.
Equipos

03013500010008 CONTENEDOR DE ALMACENESdía 1.0000 15.46

15.46

Partida

15.46

Partida 01.01.01.03 COMEDOR PERSONAL OBRERO

Rendimiento glb/DIA MO. EQ. Costo unitario directo por : glb 1,675.00

CódigoDescripción Recurso
EquiposUnidadCuadrillaCantidadPrecio S/.Parcial S/.03013500020001COMEDOR OBREROSglb1.00001,675.00

1,675.00 1,675.00

Rendimiento mes/DIA MO. EQ. Costo unitario directo por : mes 747.00

CódigoDescripción Recurso
EquiposUnidadCuadrillaCantidadPrecio S/.Parcial S/.03013500010006CONTENEDOR DE INODOROS Y LAVATORIOS día30.0000

03013500010006 CONTENEDOR DE INODOROS Y LAVATORIOS día 30.0000 12.45 373.50 CONTENEDOR DE DUCHAS día 30.0000 12.45

373.50

SERVICIOS HIGIENICOS DE OBRA (CONTENEDORES)

747.00

Partida 01.01.01.05 CARTEL DE OBRA

01.01.01.04

Rendimiento und/DIA MO. EQ. Costo unitario directo por : und 974.26

Código Descripción Recurso Unidad Cuadrilla Cantidad Precio S/. Parcial S/. Equipos

0305010001 CARTEL DE OBRA und 1.0000 974.26 974.26 974.26 974.26

Presupuesto 001 Subpresupuesto 001 Fecha presupuesto 01/07/2019 EDIFICIO MULTIFAMILIAR DE 4 PISOS Y 1 SÓTANO EN EL DISTRITO DE VILLA EL SALVADOR ESTRUCTURA Y ARQUITECTURA

Partida 01.01.01.06 CERCO DE OBRA CON POSTES DE MADERA Y TRIPLAY

				MADERA '				
Rendimiento	m/DIA MO	.	EQ.		Cos	sto unitario dire	ecto por : m	150.11
Código	Descripción R	ecurso Materiales		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0231010001	MADERA TOR			p2		5.0000	5.80	29.00 29.00
0410010006		ibcontratos DE OBRA (4.00x2.50	m.)	und		0.0033	1,423.20	4.70 4.70
010102011103 010102011104 010105010006 1.13	POSTES DE M APLOMO DE F SUMINISTRO CONCRETO S e=0.05 m.VAC	Y COLOCACION DE OLADO MEZCLA 1: IADO MANUALMEN		MİGON		0.4167 0.4167 0.8333 m2	43.80 23.13 67.38 0.0667	18.25 9.64 56.15 16.93
010105010106 5.22	CONCRETO C	IMIENTOS MEZCLA	1:10 CEMENTO-HC	RMIGON		m3	0.0267	195.68
	PINTURA LAT	EX EN MADERA		m2		2.4000	10.84	26.02 116.41
Partida	01.01.02.01	INSTALACION PR	ROVISIONAL DE ENI	ERGIA EL	ECTRICA			
Rendimiento	glb/DIA MO).	EQ.		Cost	o unitario dire	cto por : glb	918.75
Código	Descripción R	ecurso Ino de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010003	OPERARIO	illo de Obia						
0101010005	PEON			hh hh		16.0000 16.0000	21.86 15.78	349.76 252.48 602.24
0101010005 020501000100	PEON	<i>l</i> lateriales		hh	A PVC-SAP EL	16.0000		252.48 602.24
	PEON 04 8.05 13 18.40	N ateriales		hh TUBERIA 80.50		16.0000 ECTRICA DE	15.78	252.48 602.24) und
020501000100 10.0000 026810000100	PEON 04 8.05 13	AWG		TUBERIA 80.50 CAJA CU		16.0000 ECTRICA DE	15.78 1" X 3 m (25 mm	252.48 602.24) und
0205010001000 10.0000 026810000100 3.0000 0270010037	PEON 04 8.05 13 18.40 mm CABLE N° 10 A	AWG AWG	ROVISIONAL DE AG	TUBERIA 80.50 CAJA CU 55.20 rll		16.0000 ECTRICA DE FIERRO GAL\ 0.5000	15.78 1" X 3 m (25 mm /ANIZADO 150 X 195.68	252.48 602.24) und 150 X100 und 97.84 82.97
0205010001000 10.0000 026810000100 3.0000 0270010037 0270010039	PEON 04 8.05 13 18.40 mm CABLE N° 10 A	AWG AWG INSTALACION PR	R OVISIONAL DE AG EQ.	TUBERIA 80.50 CAJA CU 55.20 rll	JADRADA DE	16.0000 ECTRICA DE FIERRO GAL\ 0.5000	15.78 1" X 3 m (25 mm /ANIZADO 150 X 195.68 82.97	252.48 602.24) und 150 X100 und 97.84 82.97
0205010001000 10.0000 026810000100 3.0000 0270010037 0270010039	PEON N 04 8.05 13 18.40 mm CABLE N° 10 / CABLE N° 14 / 01.01.02.02 glb/DIA MO Descripción R	AWG AWG INSTALACION PR		TUBERIA 80.50 CAJA CU 55.20 rll	JADRADA DE	16.0000 ECTRICA DE FIERRO GAL\ 0.5000 1.0000	15.78 1" X 3 m (25 mm /ANIZADO 150 X 195.68 82.97	252.48 602.24) und .150 X100 und .97.84 .82.97 .316.51
0205010001000 10.0000 026810000100 3.0000 0270010037 0270010039 Partida Rendimiento	PEON N 04 8.05 13 18.40 mm CABLE N° 10 A CABLE N° 14 A 01.01.02.02 glb/DIA MO Descripción R Si	AWG AWG INSTALACION PR decurso ubpartidas		hh TUBERIA 80.50 CAJA CU 55.20 rll rll UA	JADRADA DE	16.0000 ECTRICA DE FIERRO GAL\ 0.5000 1.0000 o unitario direc	15.78 1" X 3 m (25 mm /ANIZADO 150 X 195.68 82.97 cto por : glb	252.48 602.24) und 150 X100 und 97.84 82.97 316.51

1,699.65

Presupuesto Subpresupuesto 001 001 EDIFICIO MULTIFAMILIAR DE 4 PISOS Y 1 SÓTANO EN EL DISTRITO DE VILLA EL SALVADOR ESTRUCTURA Y ARQUITECTURA

Fecha presupuest	o 01/07/201	9						
Partida	01.01.03.0	1 LIMPIEZA DI	EL TERRENO CON EQU	IPO				
Rendimiento	m2/DIA	MO. 1,200.0000	EQ. 1,200.0000		Cos	to unitario direc	to por : m2	1.18
Código	Descripcio	ón Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010005	PEON	Mario de Obra		hh	1.0000	0.0067	15.78	0.11 0.11
0301200001000		Equipos		MOTONI	VELADORA F	FIAT FG-85Ahm	1.0000	0.0067
159.49	1.07							1.07
Partida	01.01.03.0	2 TRAZO Y RE	PLANTEO INICAL					
Rendimiento	m2/DIA	MO. 200.0000	EQ. 200.0000		Cos	to unitario direc	to por : m2	5.46
Código	Descripcio	ón Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010005 0101030000000 22.61	PEON 05 0.90			hh OPERAF	3.0000 RIO TOPOGRA	0.1200 AFO hh	15.78 1.0000	1.89 0.0400
22.01	0.00	Materiales						2.79
0207030001 0213010001 0213040001000 0.37			l (42.5 kg)	m3 bol TIZA BO	LSA DE 40 kg	0.0062 0.0180 und	43.58 17.37 0.0200	0.27 0.31 18.56
0213060001000 0.05)1			OCRE R	OJO	kg	0.0100	4.60
0240020001	PINTURA			gal		0.0050	32.91	0.16 1.16
0301000002 0301000011000 0.75		Equipos POGRAFICO		día TEODOL	1.0000 LITO día	0.0050 1.0000	150.00 0.0050	0.75 150.00
0301490001000 0.01)1			CORDEL	-	rll	0.0015	4.62
								1.51
Partida	01.02.01	EXCAVACIO	N MASIVA CON EQUIPO	O PESADO				
Rendimiento	m3/DIA	MO. 100.0000	EQ. 100.0000		Cos	to unitario direc	to por : m3	14.82
Código	Descripcio	ón Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010005	PEON			hh	1.0000	0.0800	15.78	1.26 1.26
0301170002000 0.0800)5 169.49	Equipos		RETROE 13.56	EXCAVADORA	A CASE 590 SK	hm	1.0000
								1356

13.56

Presupuesto 001 Subpresupuesto 01/07/2019

EDIFICIO MULTIFAMILIAR DE 4 PISOS Y 1 SÓTANO EN EL DISTRITO DE VILLA EL SALVADOR ESTRUCTURA Y ARQUITECTURA

Fecha presupues	to 01/0//20 1	19						
Partida	01.02.02	EXCAVACION D	E ZANJA CON EQU	IPO (TERR	ENO SUAVE)			
Rendimiento	m3/DIA	MO. 100.0000	EQ. 100.0000		Cos	to unitario dired	cto por : m3	14.88
Código	Descripci	ón Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010005	PEON	mano de Obra		hh	1.0000	0.0800	15.78	1.26 1.26
0301010006 030117000200 0.0800		Equipos IENTAS MANUALES		%mo RETROE 13.56	EXCAVADORA	5.0000 A CASE 580C	1.26 hm	0.06 1.0000
Partida	01.02.03	NIVELACION INT	TERIOR APISONADO	O MANUAL	-			13.62
Rendimiento	m2/DIA	MO. 120.0000	EQ. 120.0000		Cos	to unitario dired	cto por : m2	2.85
Código	Descripci	ón Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003 0101010005	CAPATAZ OPERARI PEON	7		hh hh hh	0.1000 1.0000 1.0000	0.0067 0.0667 0.0667	26.23 21.86 15.78	0.18 1.46 1.05 2.69
0231190001	MADERA	Materiales PINO		p2		0.0300	2.75	0.08 0.08
0301010006	HERRAM	Equipos IENTAS MANUALES		%mo		3.0000	2.69	0.08 0.08
Partida	01.02.04	RELLENO COMP	PACTADO CON MAT	ΓERIAL DE	PRESTAMO			
Rendimiento	m3/DIA	MO. 18.0000	EQ. 18.0000		Cos	to unitario dired	cto por : m3	90.06
Código	Descripci	ón Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010004 0101010005	OFICIAL PEON	Mario de Obra		hh hh	1.0000 2.0000	0.4444 0.8889	17.51 15.78	7.78 14.03 21.81
0201030001 020704000100		Materiales A		gal MATERI	AL GRANULAI	0.1500 R PARA RELLI	9.69 ENO m3	1.45 1.3000
50.80 0207070001	66.04 AGUA PU	IESTA EN OBRA		m3		0.0800	2.10	0.17 67.66
0301100003	COMPAC	Equipos TADORA DE PLANCHA		día	1.0000	0.0556	10.59	0.59 0.59

Presupuesto 001 Subpresupuesto 01/07/2019

EDIFICIO MULTIFAMILIAR DE 4 PISOS Y 1 SÓTANO EN EL DISTRITO DE VILLA EL SALVADOR ESTRUCTURA Y ARQUITECTURA

Partida	01.02.05	ELIMINACIO	N DE MATERIAL EXCE	DENTE DU	RANTE EL PF	ROCESO CONS	STRUCTIVO	
Rendimiento	m3/DIA	MO. 300.0000	EQ. 300.0000		Cos	to unitario direc	to por : m3	41.99
Código	Descripc	ión Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010005	PEON			hh	1.0000	0.0267	15.78	0.42 0.42
030116000100 177.97	02 4.75	Equipos		CARGAI	OOR FRONTA	L CAT-930hm	1.0000	0.0267
	0	Subcontratos						4.75
0403030001 11.57	SC ELIMI		IAL EXCEDENTE CON	VOLQUETE	ES	m3	1.0000	11.57
		Subpartidas						11.57
010104030701 25.25	TRANSLA		PARA SU ELIMINACIO	N (MANUA	L)	m3	1.0000	25.25
								25.25
Partida	01.03.01	SOLADOS C	ONCRETO f'c=100 kg/d	:m2 h=2"				
Rendimiento	m2/DIA	MO. 200.0000	EQ. 200.0000		Cos	to unitario direc	eto por : m2	13.41
Rendimiento Código	-	ión Recurso	EQ. 200.0000	Unidad	Cos Cuadrilla	to unitario direc	eto por : m2	13.41 Parcial S/.
	-	ión Recurso Mano de Obra	EQ. 200.0000	Unidad hh			·	
Código	Descripc	ión Recurso Mano de Obra	EQ. 200.0000		Cuadrilla	Cantidad	Precio S/.	Parcial S/.
Código 0101010002 0101010003 0101010004	Descripc CAPATAZ OPERAR OFICIAL	ión Recurso Mano de Obra	EQ. 200.0000	hh hh hh	0.1000 1.0000 1.0000	0.0040 0.0400 0.0400	Precio S/. 26.23 21.86 17.51	Parcial S/. 0.10 0.87 0.70
Código 0101010002 0101010003	Descripc CAPATAZ OPERAR	ión Recurso Mano de Obra	EQ. 200.0000	hh hh	Cuadrilla 0.1000 1.0000	0.0040 0.0400	Precio S/. 26.23 21.86	Parcial S/. 0.10 0.87 0.70 4.42
Código 0101010002 0101010003 0101010004	Descripc CAPATAZ OPERAR OFICIAL	ión Recurso Mano de Obra Z IO	EQ. 200.0000	hh hh hh	0.1000 1.0000 1.0000	0.0040 0.0400 0.0400	Precio S/. 26.23 21.86 17.51	Parcial S/. 0.10 0.87 0.70
Código 0101010002 0101010003 0101010004 0101010005	Descripc CAPATAZ OPERAR OFICIAL PEON	ión Recurso Mano de Obra Z IO Materiales	EQ. 200.0000	hh hh hh hh	0.1000 1.0000 1.0000	Cantidad 0.0040 0.0400 0.0400 0.2800	26.23 21.86 17.51 15.78	0.10 0.87 0.70 4.42 6.09
Código 0101010002 0101010003 0101010004 0101010005	Descripc CAPATAZ OPERAR OFICIAL PEON	ión Recurso Mano de Obra Z IO Materiales	EQ. 200.0000	hh hh hh hh	0.1000 1.0000 1.0000	Cantidad 0.0040 0.0400 0.0400 0.2800	Precio S/. 26.23 21.86 17.51 15.78	9.10 0.10 0.87 0.70 4.42 6.09
Código 0101010002 0101010003 0101010004 0101010005 0201030001 0207030001	Descripc CAPATAZ OPERAR OFICIAL PEON GASOLIN HORMIGO	ión Recurso Mano de Obra Z IO Materiales IA ON	EQ. 200.0000	hh hh hh hh gal m3	0.1000 1.0000 1.0000	Cantidad 0.0040 0.0400 0.0400 0.2800 0.0400 0.0595	Precio S/. 26.23 21.86 17.51 15.78 9.69 43.58	0.10 0.87 0.70 4.42 6.09 0.39 2.59
Código 0101010002 0101010003 0101010004 0101010005 0201030001 0207030001 0207070001	Descripc CAPATAZ OPERAR OFICIAL PEON GASOLIN HORMIGG AGUA PL	ión Recurso Mano de Obra Z IO Materiales IA ON JESTA EN OBRA		hh hh hh hh gal m3 m3	0.1000 1.0000 1.0000	0.0040 0.0400 0.0400 0.2800 0.0400 0.0595 0.0070	26.23 21.86 17.51 15.78 9.69 43.58 2.10	0.10 0.87 0.70 4.42 6.09 0.39 2.59 0.01
Código 0101010002 0101010003 0101010004 0101010005 0201030001 0207030001	Descripc CAPATAZ OPERAR OFICIAL PEON GASOLIN HORMIGG AGUA PL	ión Recurso Mano de Obra Z IO Materiales IA ON		hh hh hh hh gal m3	0.1000 1.0000 1.0000	Cantidad 0.0040 0.0400 0.0400 0.2800 0.0400 0.0595	Precio S/. 26.23 21.86 17.51 15.78 9.69 43.58	0.10 0.87 0.70 4.42 6.09 0.39 2.59 0.01 3.65
Código 0101010002 0101010003 0101010004 0101010005 0201030001 0207030001 0207070001	Descripc CAPATAZ OPERAR OFICIAL PEON GASOLIN HORMIGG AGUA PL	ión Recurso Mano de Obra Z IO Materiales IA ON JESTA EN OBRA O PORTLAND TIPO		hh hh hh hh gal m3 m3	0.1000 1.0000 1.0000	0.0040 0.0400 0.0400 0.2800 0.0400 0.0595 0.0070	26.23 21.86 17.51 15.78 9.69 43.58 2.10	Parcial S/. 0.10 0.87 0.70 4.42 6.09 0.39 2.59 0.01
Código 0101010002 0101010003 0101010004 0101010005 0201030001 0207030001 0207070001	Descripc CAPATAZ OPERAR OFICIAL PEON GASOLIN HORMIGG AGUA PL CEMENT	ión Recurso Mano de Obra Z IO Materiales IA ON JESTA EN OBRA		hh hh hh hh m3 m3 bol	0.1000 1.0000 1.0000 7.0000	0.0040 0.0400 0.0400 0.2800 0.0400 0.0595 0.0070	26.23 21.86 17.51 15.78 9.69 43.58 2.10 17.37	0.10 0.87 0.70 4.42 6.09 0.39 2.59 0.01 3.65

Presupuesto 001
Subpresupuesto 01/07/2019
Fecha presupuesto 01/07/2019

EDIFICIO MULTIFAMILIAR DE 4 PISOS Y 1 SÓTANO EN EL DISTRITO DE VILLA EL SALVADOR ESTRUCTURA Y ARQUITECTURA

Partida 01.03.02 CIMIENTOS CORRIDOS MEZCLA 1:10 CEMENTO-HORMIGON 30% PIEDRA

Partida	01.03.02	CIMIENTOS	JORRIDOS IVIEZCEA I	. 10 CEMEN	10-nokwige	N 30% FIEDR	A	
Rendimiento	m3/DIA	MO. 25.0000	EQ. 25.0000		Cos	to unitario dired	cto por : m3	188.53
Código	Descripc	ión Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002	CAPATA			hh	0.1000	0.0320	26.23	0.84
0101010003	OPERAR			hh	2.0000	0.6400	21.86	13.99
0101010004	OFICIAL			hh	1.0000	0.3200	17.51	5.60
0101010005	PEON			hh	8.0000	2.5600	15.78	40.40
010101000600	02			OPERAD	OOR DE EQUI	PO LIVIANO	hh	1.0000
0.3200	22.61			7.24				
		Matarialaa						68.07
0207010006	PIEDRA (Materiales GRANDE DE 8"		m3		0.5000	43.46	21.73
0207030001	HORMIG			m3		0.8700	43.58	37.91
0207070001		JESTA EN OBRA		m3		0.1800	2.10	0.38
0213010001		O PORTLAND TIPO	l (42 5 kg)	bol		3.0500	17.37	52.98
0210010001	OLIVILIAI	0101(12/11/2) 111 0	r (+2.0 kg)	DOI		0.0000	17.07	113.00
		Equipos						
0301010006		IIENTAS MANUALES	;	%mo		3.0000	68.07	2.04
030129000300					DORA DE CO	NCRETO 11 P	3 (23 HP)hm	1.0000
0.3200	16.95			5.42				7.46
Partida	01.03.03	CONCRETO	EN FALSOPISO MEZO	LA 1:8 CEN	MENTO-HORN	/IIGON E=4"		
Rendimiento	m2/DIA	MO. 120.0000	EQ. 120.0000		Cos	to unitario dired	cto por : m2	27.26
Código	Descripc	ión Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002	CAPATA	<u>Z</u>		hh	0.1000	0.0067	26.23	0.18
0101010003	OPERAR	IO		hh	2.0000	0.1333	21.86	2.91
0101010004	OFICIAL			hh	1.0000	0.0667	17.51	1.17
0101010005	PEON			hh	7.0000	0.4667	15.78	7.36
		Matadalaa						11.62
0201020001	GASOLIN	Materiales		gol		0.0400	0.60	0.20
0201030001 0207030001	HORMIG			gal m3		0.0400 0.1130	9.69 43.58	0.39 4.92
0207030001		JESTA EN OBRA		m3		0.1130	2.10	0.04
0213010001		O PORTLAND TIPO	I (42 5 kg)	bol		0.5000	17.37	8.69
0213010001	CLIVILIVI	OT OKTEAND THE	1 (42.5 kg)	DOI		0.5000	17.57	14.04
		Equipos						
0301010006	HERRAN	IIENTAS MANUALES	;	%mo		3.0000	11.62	0.35
030106000200				REGLA I	DE MADERA I	PINO 2" X 6" X	10' und	0.0050
23.41	0.12							
030129000300					DORA DE CO	NCRETO 11 P	3 (23 HP)hm	1.0000
0.0667	16.95			1.13				

1.60

Presupuesto 001 Subpresupuesto 001 Fecha presupuesto 01/07/2019

EDIFICIO MULTIFAMILIAR DE 4 PISOS Y 1 SÓTANO EN EL DISTRITO DE VILLA EL SALVADOR ESTRUCTURA Y ARQUITECTURA

Partida	01.04.01.01	CONCRETO PARA ZAPATAS f'c=210 kg/cm2

Rendimiento	m3/DIA	MO. 22.0 0	000	EQ. 22.0000		Cost	to unitario dired	cto por : m3	311.62
Código	Descripci	ón Recurs Mano de			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003 0101010004 0101010005 0101010006000 0.7273	CAPATAZ OPERAR OFICIAL PEON 02 22.61	7	Obia		hh hh hh hh OPERAD 16.44	0.2000 1.0000 1.0000 6.0000 OOR DE EQUIF	0.0727 0.3636 0.3636 2.1818 PO LIVIANO	26.23 21.86 17.51 15.78 hh	1.91 7.95 6.37 34.43 2.0000
0007040004004	00	Materia	ales		DIEDDA		/01 0	0.0500	
0207010001000 46.03						CHANCADA 1		0.8500	54.15
0207020001000 16.14					ARENA (JRUESA	m3	0.4200	38.42
0207070001 0213010001			ND TIPO I (42.5 kg)	m3 bol		0.1800 9.7400	2.10 17.37	0.38 169.18 231.73
0301010006 0301290001000 0.3636		Equip IENTAS MA			%mo VIBRADO 4.62	OR DE CONCI	3.0000 RETO 4 HP 1.2	67.10 25" hm	2.01 1.0000
0301290003000 0.3636					-	DORA DE CO	NCRETO 11 P	3 (23 HP)hm	1.0000
0.3030	10.93				0.10				12.79
Partida	01.04.01.0)2 ENC	OFRADO I	DE ZAPATAS					
Partida Rendimiento	01.04.01.0 m2/DIA	MO. 10.8 6		DE ZAPATAS EQ. 10.8000		Cost	to unitario dired	cto por : m2	44.83
	m2/DIA	MO. 10.80	000 o		Unidad	Cost	to unitario direc	cto por : m2 Precio S/.	44.83 Parcial S/.
Rendimiento	m2/DIA	MO. 10.80 ión Recurs Mano de Z	000 o Obra		Unidad hh hh hh			•	
Rendimiento Código 0101010002 0101010003 0101010005 0201040001 0204010001000	m2/DIA Descripci CAPATAZ OPERAR PEON PETROLE	MO. 10.80 ón Recurs Mano de	000 o Obra		hh hh hh	Cuadrilla 0.1000 1.0000 1.0000	0.0741 0.7407	Precio S/. 26.23 21.86	Parcial S/. 1.94 16.19 11.69
Rendimiento Código 0101010002 0101010003 0101010005	m2/DIA Descripci CAPATAZ OPERAR PEON PETROLE 01 0.87 ACERO C 05	MO. 10.80 són Recurs Mano de Z IO Materia EO D-2	o Obra		hh hh hh gal ALAMBR	0.1000 1.0000 1.0000	0.0741 0.7407 0.7407 0.0500	Precio S/. 26.23 21.86 15.78 7.20 kg 2.83	Parcial S/. 1.94 16.19 11.69 29.82
Rendimiento Código 0101010002 0101010003 0101010005 0201040001 0204010001000 2.96 0204030001 0204120001000 3.49 0204120001000	m2/DIA Descripci CAPATAZ OPERAR PEON PETROLE 01 0.87 ACERO C 05 0.35	MO. 10.80 són Recurs Mano de Z IO Materia EO D-2	o Obra	EQ. 10.8000	hh hh gal ALAMBR kg CLAVOS	0.1000 1.0000 1.0000 E NEGRO RE	0.0741 0.7407 0.7407 0.7500 COCIDO N° 8 0.2900	Precio S/. 26.23 21.86 15.78 7.20 kg 2.83 EZA DE 3" kg	Parcial S/. 1.94 16.19 11.69 29.82 0.36 0.2933 0.82
Rendimiento Código 0101010002 0101010003 0101010005 0201040001 0204010001000 2.96 0204030001 0204120001000 3.49	m2/DIA Descripci CAPATAZ OPERAR PEON PETROLE 01 0.87 ACERO C 05 0.35 07 0.35	MO. 10.80 són Recurs Mano de Z IO Materia EO D-2	000 Obra ales OO fy = 4200	EQ. 10.8000	hh hh gal ALAMBR kg CLAVOS	0.1000 1.0000 1.0000 E NEGRO RE	0.0741 0.7407 0.7407 0.7407 0.0500 COCIDO N° 8 0.2900 RA CON CABE	Precio S/. 26.23 21.86 15.78 7.20 kg 2.83 EZA DE 3" kg	Parcial S/. 1.94 16.19 11.69 29.82 0.36 0.2933 0.82 0.1000

Presupuesto 001 EDIFICIO MULTIFA 001

01.04.01.03

EDIFICIO MULTIFAMILIAR DE 4 PISOS Y 1 SÓTANO EN EL DISTRITO DE VILLA EL SALVADOR ESTRUCTURA Y ARQUITECTURA

Fecha presupuesto 01/07/2019

Partida

Rendimiento	kg/DIA MO. 250.0000	EQ. 250.0000	EQ. 250.0000 Costo unitario directo por : R			
Código	Descripción Recurso Mano de Obra	Unida	d Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0404040000	CADATA7	hh	0.2000	0.0064	26.22	0.17

ACERO fy=4200 kg/cm2 GRADO 60 en ZAPATAS

· · · · · · · · · · · · · · · · ·	Mano de Obra					
0101010002	CAPATAZ	hh	0.2000	0.0064	26.23	0.17
0101010003	OPERARIO	hh	1.0000	0.0320	21.86	0.70
0101010004	OFICIAL	hh	1.0000	0.0320	17.51	0.56
						1.43
	Materiales					
020401000100	02	ALAMBR	E NEGRO RE	COCIDO Nº 16	kg	0.0300
2.96	0.09					
0204030001	ACERO CORRUGADO fy = 4200 kg/cm2 GRADO 60	kg		1.0700	2.83	3.03
						3.12
	Equipos					
0301010006	HERRAMIENTAS MANUALES	%mo		5.0000	1.43	0.07
						0.07

Partida 01.04.02.01 CONCRETO EN VIGAS DE CIMENTACION f'c=210 kg/cm2

Rendimiento	m3/DIA	MO. 18.0000	EQ. 18.0000	Costo unitario directo por : m3	318.10

Código	Descripción Recurso Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003 0101010004 0101010005	CAPATAZ OPERARIO OFICIAL PEON	hh hh hh	0.1000 1.0000 1.0000 6.0000	0.0444 0.4444 0.4444 2.6667	26.23 21.86 17.51 15.78	1.16 9.71 7.78 42.08
010101000600 0.4444	02 22.61	10.05	OOR DE EQUI	PO LIVIANO	hh	1.0000 70.78
0201030001 020701000100 46.03 020702000100 16.14 0207070001 0213010001	02 AGUA PUESTA EN OBRA CEMENTO PORTLAND TIPO I (42.5 kg)		CHANCADA 1 GRUESA	0.0300 m3 m3 0.1800 9.7400	9.69 0.8500 0.4200 2.10 17.37	0.29 54.15 38.42 0.38 169.18 232.02
0301010006 030129000100 0.4444 030129000300 0.4444	12.71	5.65		3.0000 RETO 4 HP 1.25 NCRETO 11 P3		2.12 1.0000 1.0000 15.30

Presupuesto 001 Subpresupuesto 01/07/2019

Partida	01.04.02.02 ENCOFRADO DE VIGAS DE CIMENT	FACION				
Rendimiento	m2/DIA MO. 10.0000 EQ. 10.0000		Cost	to unitario direc	to por : m2	56.48
Código	Descripción Recurso Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003 0101010005	CAPATAZ OPERARIO PEON	hh hh hh	0.1000 1.0000 1.0000	0.0800 0.8000 0.8000	26.23 21.86 15.78	2.10 17.49 12.62 32.21
0201040001 0204030001 0204120001000	Materiales PETROLEO D-2 ACERO CORRUGADO fy = 4200 kg/cm2 GRADO 60 05 0.35	gal kg CLAVOS	PARA MADE	0.0500 0.6860 RA CON CABE	7.20 2.83 ZA DE 3" kg	0.36 1.94 0.1000
020412000100 3.49		CLAVOS	PARA MADE	RA CON CABE	ZA DE 4" kg	0.1000
0231010001	MADERA TORNILLO	p2		3.5000	5.80	20.30 23.30
0301010006	Equipos HERRAMIENTAS MANUALES	%mo		3.0000	32.21	0.97 0.97
Partida	01.04.02.03 ACERO fy=4200 kg/cm2 GRADO 60	en VIGAS D	DE CIMENTAC	CION		
Rendimiento	kg/DIA MO. 250.0000 EQ. 250.0000		Cos	sto unitario dired	cto por : kg	4.62
Código	Descripción Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003 0101010004	Mano de Obra CAPATAZ OPERARIO OFICIAL	hh hh hh	0.2000 1.0000 1.0000	0.0064 0.0320 0.0320	26.23 21.86 17.51	0.17 0.70 0.56 1.43
020401000100	Materiales	ALAMBRI	E NEGRO RE	COCIDO Nº 16	i kg	0.0300
2.96 0204030001	0.09 ACERO CORRUGADO fy = 4200 kg/cm2 GRADO 60	kg		1.0700	2.83	3.03 3.12
0301010006	Equipos HERRAMIENTAS MANUALES	%mo		5.0000	1.43	0.07 0.07

Presupuesto 001 Subpresupuesto 001 Fecha presupuesto 01/07/2019

EDIFICIO MULTIFAMILIAR DE 4 PISOS Y 1 SÓTANO EN EL DISTRITO DE VILLA EL SALVADOR ESTRUCTURA Y ARQUITECTURA

Partida	01.04.03.01	CONCRETO EN	N COLUMNAS f'c=210	kg/cm2				
Rendimiento	m3/DIA N	10. 12.0000	EQ. 12.0000		Cos	to unitario direc	to por : m3	408.29
Código	Descripción M	Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003 0101010004 0101010005 010101000600 2.0000	CAPATAZ OPERARIO OFICIAL PEON	iano de Obra		hh hh hh hh OPERAI 45.22	0.1000 1.0000 1.0000 8.0000 DOR DE EQUII	0.0667 0.6667 0.6667 5.3333 PO LIVIANO	26.23 21.86 17.51 15.78 hh	1.75 14.57 11.67 84.16 3.0000
000704000400	0.0	Materiales		DIEDDA		1/01	0.0000	157.37
020701000100 48.74 020702000100					CHANCADA 1 GRUESA	n/2" m3 m3	0.9000 0.4000	54.15 38.42
15.37 0207070001 0213010001 0231010001		STA EN OBRA PORTLAND TIPO I (DRNILLO	42.5 kg)	m3 bol p2		0.1800 9.0000 0.0833	2.10 17.37 5.80	0.38 156.33 0.48 221.30
030121000300	01	Equipos		WINCHE	ELECTRICO	3.6 HP DE DOS	S BALDEShm	1.0000
0.6667 030129000100 0.6667	12.72 02 12.71			8.48 VIBRAD0 8.47	OR DE CONC	RETO 4 HP 1.2	5" hm	1.0000
030129000300	01				DORA DE CO	NCRETO 11 P	3 (23 HP)hm	1.0000
0.6667 0301340001	16.95 ANDAMIO M	ETALICO		día	1.0000	0.0833	16.50	1.37 29.62
Partida	01.04.03.02	ENCOFRADO Y	/ DESENCOFRADO N	IORMAL E	N COLUMNAS	5		
Rendimiento	m2/DIA M	10. 8.0000	EQ. 8.0000		Cos	to unitario direc	to por : m2	73.53
Código	Descripción	Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003 0101010005	CAPATAZ OPERARIO PEON	nano de Obra		hh hh hh	0.1000 1.0000 1.0000	0.1000 1.0000 1.0000	26.23 21.86 15.78	2.62 21.86 15.78 40.26
0201040001 020401000100		Materiales D-2		gal ALAMBR	RE NEGRO RE	0.0500 COCIDO N° 8	7.20 kg	0.36 0.3050
2.96 020412000100				CLAVOS	PARA MADE	RA CON CABE	ZA DE 3" kg	0.1500
3.49 020412000100				CLAVOS	PARA MADE	RA CON CABE	ZA DE 4" kg	0.1000
3.49 0231010001	0.35 MADERA TO	DRNILLO		p2		5.1600	5.80	29.93 32.06
0301010006	HERRAMIEN	Equipos NTAS MANUALES		%mo		3.0000	40.26	1.21

1.21

Presupuesto 001 Subpresupuesto 001 Fecha presupuesto 01/07/2019

EDIFICIO MULTIFAMILIAR DE 4 PISOS Y 1 SÓTANO EN EL DISTRITO DE VILLA EL SALVADOR ESTRUCTURA Y ARQUITECTURA

r coria presupues	10 01/01/2010							
Partida	01.04.03.03	ACERO fy=42	00 kg/cm2 GRADO 60	en COLUM	INAS			
Rendimiento	kg/DIA MC	D. 250.0000	EQ. 250.0000		Co	sto unitario dire	cto por : kg	4.62
Código	Descripción F	Recurso ano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003 0101010004	CAPATAZ OPERARIO OFICIAL	ano de Obra		hh hh hh	0.2000 1.0000 1.0000	0.0064 0.0320 0.0320	26.23 21.86 17.51	0.17 0.70 0.56 1.43
020401000100 2.96		Materiales		ALAMBR	RE NEGRO RE	ECOCIDO Nº 16	s kg	0.0300
0204030001		RUGADO fy = 42	00 kg/cm2 GRADO 60	kg		1.0700	2.83	3.03 3.12
0301010006	HERRAMIEN	Equipos ΓΑS MANUALES		%mo		5.0000	1.43	0.07 0.07
Partida	01.04.04.01	CONCRETO E	EN COLUMNAS f'c=210	kg/cm2				
Rendimiento	m3/DIA MC). 12.0000	EQ. 12.0000		Cos	to unitario direc	to por : m3	408.29
Código	Descripción F	Recurso ano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003 0101010004 0101010005 010101000600 2.0000	CAPATAZ OPERARIO OFICIAL PEON			hh hh hh hh OPERAI 45.22	0.1000 1.0000 1.0000 8.0000 DOR DE EQUI	0.0667 0.6667 0.6667 5.3333 PO LIVIANO	26.23 21.86 17.51 15.78 hh	1.75 14.57 11.67 84.16 3.0000
	1	Materiales						157.37
020701000100 48.74		iviatei iaies		PIEDRA	CHANCADA ²	1/2" m3	0.9000	54.15
020702000100 15.37	02			ARENA	GRUESA	m3	0.4000	38.42
0207070001 0213010001 0231010001	AGUA PUEST CEMENTO PO MADERA TOF	ORTLAND TIPO I	(42.5 kg)	m3 bol p2		0.1800 9.0000 0.0833	2.10 17.37 5.80	0.38 156.33 0.48 221.30
030121000300		Equipos			ELECTRICO	3.6 HP DE DO	S BALDEShm	1.0000
0.6667 030129000100 0.6667	12.72 02 12.71			8.48 VIBRADO 8.47	OR DE CONC	RETO 4 HP 1.2	5" hm	1.0000
030129000300 0.6667					DORA DE CO	NCRETO 11 P	3 (23 HP)hm	1.0000
0301340001	ANDAMIO ME	TALICO		día	1.0000	0.0833	16.50	1.37

1.37 29.62

Presupuesto 001 Subpresupuesto 01/07/2019

Partida	01.04.04.02	ENCOFRADO	Y DESENCOFRADO N	ORMAL EN	N COLUMNAS	5		
Rendimiento	m2/DIA	MO. 8.0000	EQ. 8.0000		Cos	to unitario direc	to por : m2	73.53
Código	Descripción	n Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003 0101010005	CAPATAZ OPERARIO PEON			hh hh hh	0.1000 1.0000 1.0000	0.1000 1.0000 1.0000	26.23 21.86 15.78	2.62 21.86 15.78 40.26
0201040001 020401000100 2.96	PETROLEO 01 0.90	Materiales D-2		gal ALAMBR	E NEGRO RE	0.0500 COCIDO Nº 8	7.20 kg	0.36 0.3050
020412000100 3.49				CLAVOS	PARA MADE	RA CON CABE	ZA DE 3" kg	0.1500
020412000100				CLAVOS	PARA MADE	RA CON CABE	ZA DE 4" kg	0.1000
3.49 0231010001	MADERA TO	ORNILLO		p2		5.1600	5.80	29.93 32.06
0301010006	HERRAMIE	Equipos NTAS MANUALES		%mo		3.0000	40.26	1.21 1.21
Partida	01.04.04.03	ACERO fy=420	00 kg/cm2 GRADO 60	en COLUM	NAS			
Rendimiento	kg/DIA	MO. 250.0000	EQ. 250.0000		Cos	sto unitario dire	cto por : kg	4.62
Código	Descripción	n Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003 0101010004	CAPATAZ OPERARIO OFICIAL			hh hh hh	0.2000 1.0000 1.0000	0.0064 0.0320 0.0320	26.23 21.86 17.51	0.17 0.70 0.56 1.43
020401000100	02	Materiales		ALAMBR	E NEGRO RE	COCIDO Nº 16	i kg	0.0300
2.96 0204030001	0.09 ACERO CO	RRUGADO fy = 420	0 kg/cm2 GRADO 60	kg		1.0700	2.83	3.03 3.12
0301010006	HERRAMIE	Equipos NTAS MANUALES		%mo		5.0000	1.43	0.07 0.07

Presupuesto 001 Subpresupuesto 01/07/2019

Partida 01.04.05.01	CONCRETO EN VIGAS f'c=210 kg/cm2
----------------------------	----------------------------------

Partida	01.04.05.01	CONCRETO	EN VIGAS f'c=210 kg/c	:m2				
Rendimiento	m3/DIA	MO. 22.0000	EQ. 22.0000		Cos	to unitario dired	cto por : m3	302.46
Código	Descripció	n Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003 0101010004 0101010005 010101000600	-				0.1000 1.0000 1.0000 6.0000 DOR DE EQUI	0.0364 0.3636 0.3636 2.1818 PO LIVIANO	26.23 21.86 17.51 15.78 hh	0.95 7.95 6.37 34.43 1.0000
0.3636	22.61			8.22				57.92
0201030001 020701000100 46.03	GASOLINA 02	Materiales		gal PIEDRA	CHANCADA 1	0.0300 I/2" m3	9.69 0.8500	0.29 54.15
020702000100 16.14	02			ARENA	GRUESA	m3	0.4200	38.42
0207070001 0213010001		STA EN OBRA PORTLAND TIPO	l (42.5 kg)	m3 bol		0.1800 9.7400	2.10 17.37	0.38 169.18 232.02
0301010006 030129000100 0.3636		Equipos ENTAS MANUALES	3	%mo VIBRAD 4.62	OR DE CONC	3.0000 RETO 4 HP 1.2	57.92 25" hm	1.74 1.0000
030129000300 0.3636	01 16.95			MEZCLA 6.16	DORA DE CC	NCRETO 11 F	23 (23 HP)hm	1.0000
								12.52
Partida	01.04.05.02	2 ENCOFRADO	Y DESENCOFRADO	NORMAL E	N VIGAS			
Partida Rendimiento		2 ENCOFRADO MO. 8.5000	DY DESENCOFRADO EQ. 8.5000	NORMAL E		to unitario dired	cto por : m2	100.81
	m2/DIA			NORMAL E Unidad		to unitario dired	cto por : m2 Precio S/.	100.81 Parcial S/.
Rendimiento	m2/DIA	MO. 8.5000 on Recurso Mano de Obra			Cos		·	
Rendimiento Código 0101010002 0101010003 0101010004 0101010005 0201040001 020401000100	m2/DIA Descripció CAPATAZ OPERARIO OFICIAL PEON PETROLEO	MO. 8.5000 on Recurso Mano de Obra Materiales		Unidad hh hh hh hh	Cuadrilla 0.1000 1.0000 1.0000 1.0000	0.0941 0.9412 0.9412	Precio S/. 26.23 21.86 17.51	Parcial S/. 2.47 20.57 16.48 14.85
Rendimiento Código 0101010002 0101010003 0101010004 0101010005 0201040001 020401000100 2.96 020412000100	m2/DIA Descripció CAPATAZ OPERARIO OFICIAL PEON PETROLEO 01 0.73 05	MO. 8.5000 on Recurso Mano de Obra Materiales		Unidad hh hh hh hh al	Cos Cuadrilla 0.1000 1.0000 1.0000 1.0000	0.0941 0.9412 0.9412 0.9412 0.9412	Precio S/. 26.23 21.86 17.51 15.78 7.20 kg	2.47 20.57 16.48 14.85 54.37
Rendimiento Código 0101010002 0101010003 0101010004 0101010005 0201040001 020401000100 2.96 020412000100 3.49 020412000100	m2/DIA Descripció CAPATAZ OPERARIO OFICIAL PEON PETROLEO 01 0.73 05 0.70	MO. 8.5000 on Recurso Mano de Obra Materiales		Unidad hh hh hh hh Ah	Cos Cuadrilla 0.1000 1.0000 1.0000 1.0000 RE NEGRO RE	0.0941 0.9412 0.9412 0.9412 0.9412 0.0500 COCIDO N° 8	Precio S/. 26.23 21.86 17.51 15.78 7.20 kg	2.47 20.57 16.48 14.85 54.37 0.36 0.2468
Rendimiento Código 0101010002 0101010003 0101010004 0101010005 0201040001 020401000100 2.96 020412000100 3.49 020412000100 3.49 021908000100	m2/DIA Descripció CAPATAZ OPERARIO OFICIAL PEON PETROLEO 01 0.73 05 0.70 07 0.70 05	MO. 8.5000 on Recurso Mano de Obra Materiales		Unidad hh hh hh hh Clavos Clavos	Cos Cuadrilla 0.1000 1.0000 1.0000 1.0000 RE NEGRO RE B PARA MADE	0.0941 0.9412 0.9412 0.9412 0.0500 COCIDO N° 8	Precio S/. 26.23 21.86 17.51 15.78 7.20 kg EZA DE 3" kg	2.47 20.57 16.48 14.85 54.37 0.36 0.2468
Rendimiento Código 0101010002 0101010003 0101010004 0101010005 0201040001 020401000100 2.96 020412000100 3.49 020412000100 3.49	m2/DIA Descripció CAPATAZ OPERARIO OFICIAL PEON PETROLEO 01 0.73 05 0.70 07 0.70 05 1.30 MADERA T	MO. 8.5000 on Recurso Mano de Obra) Materiales D-2		Unidad hh hh hh hh CLAVOS CLAVOS ESCANT 3.38 p2	Cos Cuadrilla 0.1000 1.0000 1.0000 1.0000 RE NEGRO RE B PARA MADE	0.0941 0.9412 0.9412 0.9412 0.0500 COCIDO N° 8 RA CON CABE	Precio S/. 26.23 21.86 17.51 15.78 7.20 kg EZA DE 3" kg	2.47 20.57 16.48 14.85 54.37 0.36 0.2468 0.2000
Rendimiento Código 0101010002 0101010003 0101010004 0101010005 0201040001 020401000100 2.96 020412000100 3.49 020412000100 3.49 021908000100 2.6000 0231010001 0276030004	m2/DIA Descripció CAPATAZ OPERARIO OFICIAL PEON PETROLEO 01 0.73 05 0.70 07 0.70 05 1.30 MADERA T	MO. 8.5000 on Recurso Mano de Obra) Materiales D-2	EQ. 8.5000	Unidad hh hh hh hh CLAVOS CLAVOS ESCANT 3.38 p2	Cos Cuadrilla 0.1000 1.0000 1.0000 1.0000 RE NEGRO RE B PARA MADE	0.0941 0.9412 0.9412 0.9412 0.0500 COCIDO N° 8 RA CON CABE RA CON CABE	Precio S/. 26.23 21.86 17.51 15.78 7.20 kg EZA DE 3" kg EZA DE 4" kg x0.05x0.40 m 5.80	2.47 20.57 16.48 14.85 54.37 0.36 0.2468 0.2000 0.2000 und 38.86

Presupuesto 001 Subpresupuesto 001 Fecha presupuesto 01/07/2019

EDIFICIO MULTIFAMILIAR DE 4 PISOS Y 1 SÓTANO EN EL DISTRITO DE VILLA EL SALVADOR ESTRUCTURA Y ARQUITECTURA

Partida	01.04.05.0	03	ACERO fy	=4200 kg/c	m2 GRADO 60	en VIGAS				
Rendimiento	kg/DIA	MO.	250.0000	EC	2. 250.0000		Cos	sto unitario direc	to por : kg	4.62
Código	Descripci		ecurso no de Obra			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003 0101010004	CAPATAZ OPERAR OFICIAL	<u> </u>	io de Obra			hh hh hh	0.2000 1.0000 1.0000	0.0064 0.0320 0.0320	26.23 21.86 17.51	0.17 0.70 0.56 1.43
0204040004000	10	M	ateriales			AL AMDE		-COCIDO Nº 46	l.a	0.0200
0204010001000 2.96	0.09					ALAMBR	E NEGRO RE	ECOCIDO Nº 16	kg	0.0300
0204030001		ORRI	UGADO fy =	4200 kg/cr	n2 GRADO 60	kg		1.0700	2.83	3.03 3.12
0301010006	HERRAM		Equipos AS MANUAL	ES		%mo		5.0000	1.43	0.07 0.07
Partida	01.04.06.0	01	CONCRET	O EN LOS	AS ALIGERAD	AS f'c=210	kg/cm2			
Rendimiento	m3/DIA	MO.	28.0000	EC	28.0000		Cos	to unitario direct	o por : m3	345.48
Código	Descripci		ecurso no de Obra			Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003 0101010004 0101010005 0101010006000 0.8571	CAPATAZ OPERAR OFICIAL PEON)2 22.61	7	io de Obia			hh hh hh hh OPERAI 19.38	0.1000 4.0000 1.0000 13.0000 DOR DE EQUI	0.0286 1.1429 0.2857 3.7143 PO LIVIANO	26.23 21.86 17.51 15.78 hh	0.75 24.98 5.00 58.61 3.0000
		М	ateriales							108.72
0207010001000 48.74)2	IVI	ateriales			PIEDRA	CHANCADA 1	1/2" m3	0.9000	54.15
0207020001000 19.21)2					ARENA	GRUESA	m3	0.5000	38.42
0207070001 0213010001			EN OBRA RTLAND TIP	PO I (42.5 k	g)	m3 bol		0.1800 9.0000	2.10 17.37	0.38 156.33 224.66
		E	Equipos							
0301210003000 0.2857	12.72					3.63		3.6 HP DE DOS		1.0000
0301290001000 0.2857	12.71					3.63	OK DE CONC	RETO 4 HP 1.25	5" hm	1.0000
0301290003000 0.2857)1 16.95					MEZCLA 4.84	DORA DE CO	NCRETO 11 P3	3 (23 HP)hm	1.0000
										12 10

12.10

Presupuesto 001 Subpresupuesto 01/07/2019

Partida	01.04.06.02	ENCOFRADO	Y DESENCOFRADO N	IORMAL E	N LOSAS ALI	GERADAS		
Rendimiento	m2/DIA MO	. 13.0000	EQ. 13.0000		Cos	to unitario direc	to por : m2	67.41
Código	Descripción R	lecurso ino de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003 0101010004 0101010005	CAPATAZ OPERARIO OFICIAL PEON			hh hh hh hh	0.1000 1.0000 1.0000 1.0000	0.0615 0.6154 0.6154 0.6154	26.23 21.86 17.51 15.78	1.61 13.45 10.78 9.71 35.55
0201040001 020401000100 2.96	PETROLEO D	Materiales -2		gal ALAMBR	RE NEGRO RE	0.0500 ECOCIDO Nº 8	7.20 kg	0.36 0.0500
020412000100	05			CLAVOS	S PARA MADE	RA CON CABE	ZA DE 3" kg	0.0700
3.49 020412000100				CLAVOS	S PARA MADE	RA CON CABE	ZA DE 4" kg	0.0500
3.49 0231010001	0.17 MADERA TOR	-		p2		5.1500	5.80	29.87 30.79
0301010006		Equipos AS MANUALES		%mo		3.0000	35.55	1.07 1.07
Partida	01.04.06.03	ACERO fy=420	00 kg/cm2 GRADO 60	en LOSAS	ALIGERADA	s		
Rendimiento	kg/DIA MO	250.0000	EQ. 250.0000		Cos	sto unitario dire	cto por : kg	4.62
Código	Descripción R Ma	ecurso no de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003 0101010004	CAPATAZ OPERARIO OFICIAL			hh hh hh	0.2000 1.0000 1.0000	0.0064 0.0320 0.0320	26.23 21.86 17.51	0.17 0.70 0.56 1.43
020401000100	02	/lateriales		ALAMBR	RE NEGRO RE	ECOCIDO Nº 16	s kg	0.0300
2.96 0204030001	0.09 ACERO CORR	RUGADO fy = 420	0 kg/cm2 GRADO 60	kg		1.0700	2.83	3.03 3.12
0301010006		Equipos AS MANUALES		%mo		5.0000	1.43	0.07 0.07

Presupuesto 001 Subpresupuesto 001 Subpresupuesto 001 ESTRUCTURA EDIFICIO MULTIFAMILIAR DE 4 PISOS Y 1 SÓTANO EN EL DISTRITO DE VILLA EL SALVADOR ESTRUCTURA Y ARQUITECTURA

Fecha presupues				2311	NOCTORA I AR	QUITECTORA	
Partida	01.04.06.04 LADRILLO H	UECO DE ARCILLA h=	15 cm PAR	A TECHO AL	IGERADO		
Rendimiento	pza/DIA MO. 1,600.0000	EQ. 1,600.0000		Cost	to unitario directo	o por : pza	2.16
Código	Descripción Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003 0101010005	CAPATAZ OPERARIO PEON		hh hh hh	0.1000 1.0000 5.0000	0.0005 0.0050 0.0250	26.23 21.86 15.78	0.01 0.11 0.39 0.51
021601000400 1.61	Materiales 05 1.63		LADRILL	O PARA TEC	HO 8H DE 15X3	0X30 cmund	1.0100
0301010006	Equipos HERRAMIENTAS MANUALES	;	%mo		3.0000	0.51	1.63 0.02 0.02
Partida	01.04.07.01 CONCRETO	EN ESCALERAS f'c=21	0 kg/cm2				
Rendimiento	m3/DIA MO. 28.0000	EQ. 28.0000		Cos	sto unitario direct	o por : m3	345.48
Código	Descripción Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003 0101010004 0101010005 010101000600 0.8571	CAPATAZ OPERARIO OFICIAL PEON		hh hh hh hh OPERAI 19.38	0.1000 4.0000 1.0000 13.0000 DOR DE EQUI	0.0286 1.1429 0.2857 3.7143 PO LIVIANO	26.23 21.86 17.51 15.78 hh	0.75 24.98 5.00 58.61 3.0000
000704000400	Materiales		DIEDDA	OLIANIO A DA	4/01	0.0000	108.72
020701000100 48.74 020702000100				CHANCADA [,] GRUESA	1/2" m3 m3	0.9000 0.5000	54.15 38.42
19.21 0207070001 0213010001	AGUA PUESTA EN OBRA CEMENTO PORTLAND TIPO	l (42.5 kg)	m3 bol		0.1800 9.0000	2.10 17.37	0.38 156.33 224.66
030121000300	Equipos 01		WINCHE	ELECTRICO	3.6 HP DE DOS	BALDEShm	1.0000
0.2857 030129000100	12.72		3.63		RETO 4 HP 1.25		1.0000
0.2857 030129000300				DORA DE CO	NCRETO 11 P3	3 (23 HP)hm	1.0000
0.2857	16.95		4.84				12.10

12.10

Presupuesto 001 Subpresupuesto 01/07/2019

. co.ia p. coapaco								
Partida	01.04.07.02	ENCOFRADO	Y DESENCOFRADO N	IORMAL EI	N ESCALERA	S		
Rendimiento	m2/DIA MC	0. 6.0000	EQ. 6.0000		Cos	to unitario direc	to por : m2	90.41
Código	Descripción F	Recurso ano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003 0101010005	CAPATAZ OPERARIO PEON			hh hh hh	0.1000 1.0000 1.0000	0.1333 1.3333 1.3333	26.23 21.86 15.78	3.50 29.15 21.04 53.69
0201040001 020401000100 2.96	PETROLEO D	Materiales)-2		gal ALAMBR	RE NEGRO RE	0.0500 COCIDO Nº 8	7.20 kg	0.36 0.1000
020412000100 3.49				CLAVOS	PARA MADE	RA CON CABE	ZA DE 3" kg	0.1000
020412000100	07			CLAVOS	PARA MADE	RA CON CABE	ZA DE 4" kg	0.1800
3.49 0231010001	0.63 MADERA TOF	RNILLO		p2		5.7700	5.80	33.47 35.11
0301010006	HERRAMIENT	Equipos FAS MANUALES		%mo		3.0000	53.69	1.61 1.61
Partida	01.04.07.03	ACERO fy=42	00 kg/cm2 GRADO 60	en ESCALI	ERAS			
Rendimiento	kg/DIA MC). 250.0000	EQ. 250.0000		Cos	sto unitario dired	cto por : kg	4.62
Código	Descripción F	Recurso ano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003 0101010004	CAPATAZ OPERARIO OFICIAL			hh hh hh	0.2000 1.0000 1.0000	0.0064 0.0320 0.0320	26.23 21.86 17.51	0.17 0.70 0.56 1.43
020401000100	02	Materiales		ALAMBR	RE NEGRO RE	ECOCIDO Nº 16	kg	0.0300
2.96 0204030001	0.09 ACERO CORF	RUGADO fy = 420	00 kg/cm2 GRADO 60	kg		1.0700	2.83	3.03 3.12
0301010006	HERRAMIENT	Equipos FAS MANUALES		%mo		5.0000	1.43	0.07 0.07

Presupuesto 001 Subpresupuesto 01/07/2019

Fecha presupues	sto U1/U//2U	19							
Partida	02.01.01	MURO LAD	RILLO K.K DE ARCILL	.A 18H (09x0	13x0.24) AM	ARRE DE CAB	EZA,JUNTA 1.5	cm.MORTERO 1:1	:5
Rendimiento	m2/DIA	MO. 5.0000	EQ. 5.0000		Cos	sto unitario dired	cto por : m2	115.63	
Código	Descripc	ión Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.	
0101010002	CAPATA			hh	0.1000	0.1600	26.23	4.20	
0101010002	OPERAR			hh	1.0000	1.6000	21.86	34.98	
0101010005	PEON			hh	1.0000	1.6000	15.78	25.25	
								64.43	
		Materiales							
020702000100 2.42	002			ARENA	GRUESA	m3	0.0629	38.42	
0207070001		JESTA EN OBRA		m3		0.0201	2.10	0.04	
0213010001	CEMENT	O PORTLAND TIPO) I (42.5 kg)	bol		0.4056	17.37	7.05	
021302000200 3.50	004			CAL HID	RATADA BOL	SA 30 kgbol	0.2772	12.63	
021601000100 510.00	001 34.68			LADRILL	.O KK 18 HUE	COS 9X13X24	cm mll	0.0680	
0231010001	MADERA	TORNILLO		p2	p2 0.2721			1.58 49.27	
		Equipos							
0301010006	HERRAN	MENTAS MANUALE	S	%mo		3.0000	64.43	1.93 1.93	
Partida	02.01.02	MURO LAD	RILLO K.K.DE ARCILL	.A 18 H (0.09	x0.13x0.24) A	MARRE DE S	OGA JUNTA 1.5	cm. MORTERO 1:	1:5
Rendimiento	m2/DIA	MO. 7.5000	EQ. 7.5000		Cos	sto unitario dire	cto por : m2	68.41	
Código	Descripc	ión Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.	
0101010003	OPERAR			hh	1.0000	1.0667	21.86	23.32	
0101010005	PEON			hh	1.0000	1.0667	15.78	16.83	
0101010000	. 20.1			••••	1.0000	1.0001	10.10	40.15	
		Materiales							
020702000100 1.23	002			ARENA	GRUESA	m3	0.0319	38.42	
0207070001	AGUA PI	JESTA EN OBRA		m3		0.0096	2.10	0.02	
0213010001		O PORTLAND TIPO) I (42.5 kg)	bol		0.1932	17.37	3.36	
021302000200			\ ·=·= ·· <i>\</i>		RATADA BOL		0.1320	12.63	
1.67				_,D		· · · · · · · · · · · · · · · ·	222	.=.00	
021601000100 510.00	001 20.40			LADRILL	.O KK 18 HUE	COS 9X13X24	cm mll	0.0400	
0231010001		TORNILLO		p2		0.2721	5.80	1.58	
				r -				28.26	

Presupuesto 001 Subpresupuesto 01/07/2019

recha presupues	510 01/01/20	13						
Partida	02.01.03	MURO DE LA	ADRILLO PANDERETA	A (0.10x0.12)	(0.24) AMARF	RE CANTO MO	RTERO 1:5 JUN	TA 1.5 cm.
Rendimiento	m2/DIA	MO. 9.0000	EQ. 9.0000		Cos	to unitario direc	to por : m2	55.41
Código	Descripc	ión Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010003 0101010005	OPERAR PEON			hh hh	1.0000 1.0000	0.8889 0.8889	21.86 15.78	19.43 14.03 33.46
020406000100	16	Materiales		ACERO	LISO EN VAR	ILLAS DE 1/4"	kg	1.2300
2.83	3.48						9	
020702000100 0.64	02			ARENA	GRUESA	m3	0.0166	38.42
0207070001		JESTA EN OBRA		m3		0.0053	2.10	0.01
0213010001		O PORTLAND TIPO	I (42.5 kg)	bol	DATABA BOI	0.1074	17.37	1.87
021302000200 0.93	04			CAL HID	RATADA BOL	SA 30 kgbol	0.0734	12.63
021601000800 420.00	06 13.44			LADRILL	O PANDERE	TA 10X12X24 c	m mll	0.0320
0231010001	-	TORNILLO		p2		0.2721	5.80	1.58 21.95
Partida	02.02.01	TARRAJEO I	DE MUROS INTERIOR	ES				
Rendimiento	m2/DIA	MO. 14.0000	EQ. 14.0000		Cos	to unitario direc	to por : m2	26.46
Código	Descripc	ión Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002	CAPATAZ			hh	0.1000	0.0571	26.23	1.50
0101010003	OPERAR	IO		hh	1.0000	0.5714	21.86	12.49
0101010005	PEON			hh	0.5000	0.2857	15.78	4.51
		Materiales						18.50
020702000100 1.34	02	water raies		ARENA (GRUESA	m3	0.0350	38.42
0207070001	AGUA PL	JESTA EN OBRA		m3		0.0060	2.10	0.01
0213010001	CEMENT	O PORTLAND TIPO	I (42.5 kg)	bol		0.2000	17.37	3.47
0231010001	MADERA	TORNILLO		p2		0.4340	5.80	2.52
		Equipos						7.34
0301010006	HERRAM	IIENTAS MANUALES	;	%mo		3.0000	18.50	0.56
030106000200					DE ALUMINIO	DE DIFERENT		und
0.0020	30.25			0.06				
								0.62

Presupuesto 001 Subpresupuesto 01/07/2019

Partida	02.02.02	TARRAJEO	DE MUROS EXTERIOR	RES				
Rendimiento	m2/DIA	MO. 10.0000	EQ. 10.0000		Cos	to unitario dired	cto por : m2	38.69
Código	Descripció	on Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003 0101010005	CAPATAZ OPERARIO PEON			hh hh hh	0.1000 1.0000 0.7500	0.0800 0.8000 0.6000	26.23 21.86 15.78	2.10 17.49 9.47 29.06
020702000100	02	Materiales		ARENA (GRUESA	m3	0.0350	38.42
1.34 0207070001 0213010001 0231010001			l (42.5 kg)	m3 bol p2		0.0068 0.2000 0.1000	2.10 17.37 5.80	0.01 3.47 0.58 5.40
0301010006 030106000200 0.0020		Equipos ENTAS MANUALES	3	%mo REGLA [0.06	DE ALUMINIO	3.0000 DE DIFERENT	29.06 TES MEDIDAS	0.87 und
0301340001		METALICO		día	2.0000	0.2000	16.50	3.30 4.23
Partida	02.03.01	TARRAJEO	DE CIELORASO					
Rendimiento	m2/DIA	MO. 10.0000	EQ. 10.0000		Cos	to unitario dired	cto por : m2	36.69
Código	Descripció	on Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003 0101010005	CAPATAZ OPERARIO PEON			hh hh hh	0.1000 1.0000 0.7500	0.0800 0.8000 0.6000	26.23 21.86 15.78	2.10 17.49 9.47 29.06
020702000100 1.08	02	Materiales		ARENA (GRUESA	m3	0.0280	38.42
0207070001 0213010001 0231010001		ESTA EN OBRA) PORTLAND TIPO FORNILLO	l (42.5 kg)	m3 bol p2		0.0054 0.1780 0.4340	2.10 17.37 5.80	0.01 3.09 2.52 6.70
0301010006 030106000200 0.0020		Equipos ENTAS MANUALES	S	%mo REGLA [0.06	DE ALUMINIO	3.0000 DE DIFERENT	29.06 TES MEDIDAS	0.87 und 0.93

Presupuesto 001 Subpresupuesto 01/07/2019

EDIFICIO MULTIFAMILIAR DE 4 PISOS Y 1 SÓTANO EN EL DISTRITO DE VILLA EL SALVADOR ESTRUCTURA Y ARQUITECTURA

Partida	02.04.01		CONTRAPISO	D DE 2"					
Rendimiento	m2/DIA	MO.	100.0000	EQ. 100.0000		Cos	to unitario direct	o por : m2	27.96
Código	Descripci		curso o de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002	CAPATAZ		o de Obra		hh	0.1000	0.0080	26.23	0.21
0101010003	OPERAR				hh	4.0000	0.3200	21.86	7.00
0101010004	OFICIAL				hh	1.0000	0.0800	17.51	1.40
0101010005	PEON				hh	6.0000	0.4800	15.78	7.57
									16.18
		Ma	ateriales						
0201030001	GASOLIN	IA			gal		0.0200	9.69	0.19
0207020001000)2				ARENA (GRUESA	m3	0.0700	38.42
2.69									
0207070001		_	EN OBRA		m3		0.0129	2.10	0.03
0213010001	CEMENT	O POR	TLAND TIPO	l (42.5 kg)	bol		0.4000	17.37	6.95
			_						9.86
			quipos						
0301010006		IENTA	S MANUALES		%mo		3.0000	16.18	0.49
0301060002000					REGLA I	DE ALUMINIO	1½" X 4" X 10"	und	0.0020
34.20	0.07				MEZOLA		NICDETO 44 DO	(00 LID)h	4 0000
0301290003000						DORA DE CC	NCRETO 11 P3	3 (23 HP)nm	1.0000
0.0800	16.95				1.36				1.92
									1.32
Partida	02.04.02		PISO DE LOS	SETA VENECIANA 40x	40 cm				
Rendimiento	m2/DIA	MO.	8.0000	EQ. 8.0000		Cos	to unitario direct	o por : m2	81.07
Código	Descripci		curso o de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002	CAPATAZ	<u> </u>			hh	0.1000	0.1000	26.23	2.62
0101010003	OPERAR	IO			hh	1.0000	1.0000	21.86	21.86
0101010005	PEON				hh	1.0000	1.0000	15.78	15.78
									40.26
		Ma	ateriales						
0207020001000)2				ARENA (GRUESA	m3	0.0400	38.42
1.54									
0207070001		_	EN OBRA		m3		0.0100	2.10	0.02
0213010001			TLAND TIPO	` 0,	bol		0.4000	17.37	6.95
0228080001	LOSETA '	VENE	CIANA 40x40 n	nm	m2		1.0500	29.58	31.06
									39.57
			quipos						
0301010006		IENTA	S MANUALES		%mo		3.0000	40.26	1.21
0301060002000)1				REGLA [DE ALUMINIO	1" X 4" X 8"und	0.0010	34.20
0.03									4.04

1.24

Presupuesto 001 Subpresupuesto 01/07/2019

Partida	02.05.01	PINTURA LATE)	K EN CIELO RASO					
Rendimiento	m2/DIA	MO. 33.0000	EQ. 33.0000		Cos	to unitario dired	cto por : m2	11.69
Código	Descripc	ión Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003	CAPATAZ OPERAR	Z IO		hh hh	0.1000 1.0000	0.0242 0.2424	26.23 21.86	0.63 5.30 5.93
0231010001 0238010004 0240010011 0240150001000 0.03	LIJA PAR PINTURA	Materiales TORNILLO A PARED LATEX LAVABLE		p2 plg gal IMPRIM <i>F</i>	ANTE	0.0250 0.2500 0.0833 kg	5.80 2.10 58.47 0.0400	0.15 0.53 4.87 0.69
0301010006	HERRAM	Equipos IENTAS MANUALES		%mo		3.0000	5.93	5.58 0.18 0.18
Partida	02.05.02	PINTURA LATE)	K EN MUROS INTER	IORES				
Rendimiento	m2/DIA	MO. 33.0000	EQ. 33.0000		Cos	to unitario dired	cto por : m2	11.54
Código	Descripc	ión Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003	CAPATAZ OPERAR	<u>7</u>		hh hh	0.1000 1.0000	0.0242 0.2424	26.23 21.86	0.63 5.30 5.93
0238010004 0240010011 0240150001000 0.03	PINTURA	Materiales A PARED LATEX LAVABLE		plg gal IMPRIMA	ANTE	0.2500 0.0833 kg	2.10 58.47 0.0400	0.53 4.87 0.69
0301010006	HERRAM	Equipos IENTAS MANUALES		%mo		3.0000	5.93	5.43 0.18 0.18
Partida	02.05.03	PINTURA LATE)	K EN MUROS EXTER	RIORES				
Rendimiento	m2/DIA	MO. 25.0000	EQ. 25.0000		Cos	to unitario dired	cto por : m2	14.18
Código	Descripc	ión Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003	CAPATAZ OPERAR	<u>7</u>		hh hh	0.1000 1.0000	0.0320 0.3200	26.23 21.86	0.84 7.00 7.84
0238010004 0240010008 0240150001000 0.17	PINTURA	Materiales A PARED LATEX SUPERMATE		plg gal IMPRIM <i>F</i>	ANTE	0.2500 0.0833 kg	2.10 58.47 0.2500	0.53 4.87 0.69
0301010006 0301340001		Equipos IENTAS MANUALES D METALICO		%mo día	0.8000	3.0000 0.0320	7.84 16.50	5.57 0.24 0.53
300 TO-TOOUT	AUDAWIN	, 17.LIOO		did	0.0000	0.0020	10.00	0.33

EDIFICIO MULTIFAMILIAR DE 4 PISOS Y 1 SÓTANO EN EL DISTRITO DE VILLA EL SALVADOR ESTRUCTURA Y ARQUITECTURA Presupuesto 001 Subpresupuesto 01/07/2019

Partida	02.06.01	PUERTAS I	DE MADERA TABLEROS	REBAJAD	OS DE 4.5 mi	m DE CEDRO		
Rendimiento	m2/DIA	MO. 1.0000	EQ. 1.0000		Cos	to unitario dired	cto por : m2	559.99
Código	Descripc	ión Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003 0101010004	CAPATA OPERAR OFICIAL	Z LIO		hh hh hh	0.1000 1.0000 1.0000	0.8000 8.0000 8.0000	26.23 21.86 17.51	20.98 174.88 140.08 335.94
020412000100	-	Materiales		CLAVOS	PARA MADE	RA CON CABE	ZA DE 1" kg	0.0750
3.49 020412000100	0.26 003			CLAVOS	S PARA MADE	RA CON CABE	EZA DE 2" kg	0.0380
3.49 022211000100	0.13)01			COLA SI	NTETICA	gal	0.1200	30.08
3.61 0231020001 023801000100 2.00	MADERA 001	CEDRO		p2 LIJA PAI	RA MADERA #	17.0000 #100 plg	9.75 1.1000	165.75 1.82
		Equipos						171.75
0301010006 0301080001 030108000300 7.59	CEPILLA	ILITIOS MANUALE DORA ELECTRICA	_	%mo hm SIERRA	0.2000 CIRCULAR	5.0000 1.6000 hm	335.94 14.60 0.2000	16.80 23.36 1.6000
7.00	12.14							52.30
Partida	02.06.02	PUERTA CO	ONTRAPLACADA 35 mn	n CON TRIP	PLAY 4 mm IN	CLUYE MARC	CO CEDRO 2"X3	3"
Rendimiento	m2/DIA	MO. 2.0000	EQ. 2.0000		Cos	to unitario dired	cto por : m2	273.84
Código	Descripo	ión Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003 0101010005	CAPATA OPERAR PEON	Z IIO		hh hh hh	0.1000 1.0000 0.3300	0.4000 4.0000 1.3200	26.23 21.86 15.78	10.49 87.44 20.83 118.76
020412000100	001	Materiales		CLAVOS	S PARA MADE	RA CON CABE	ZA DE 1" kg	0.0520
3.49 022211000100 3.61	0.18)01			COLA SI	NTETICA	gal	0.1200	30.08
0231020001 023105000100 20.88	MADERA 001	CEDRO		p2 TRIPLAY	/LUPUNA 4)	13.0100 x 8 x 4 mmpln	9.75 1.0600	126.85 19.70
20.00		Eaudin a a						151.52
0301010006	HERRAM	Equipos 1IENTAS MANUALE	S	%mo		3.0000	118.76	3.56 3.56

Presupuesto 001 Subpresupuesto 01/07/2019

. cca procupaco		•						
Partida	02.06.03	VENTANA CO	N HOJAS DE MADER	A CEDRO				
Rendimiento	m2/DIA	MO. 4.0000	EQ. 4.0000		Cos	to unitario dired	cto por : m2	164.93
Código	Descripc	ión Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003 0101010004	CAPATAZ OPERAR OFICIAL	Z IO		hh hh hh	0.1000 1.0000 0.5000	0.2000 2.0000 1.0000	26.23 21.86 17.51	5.25 43.72 17.51 66.48
020412000100	01	Materiales		CLAVOS	S PARA MADE	RA CON CABE	EZA DE 1" kg	0.0170
3.49 020412000100				CLAVOS	S PARA MADE	RA CON CABI	EZA DE 2" kg	0.0380
3.49 022211000100	0.13 01			COLA SI	INTETICA	gal	0.1200	30.08
3.61 0231020001 023801000100 1.09	MADERA 01	CEDRO		p2 LIJA PAI	RA MADERA #	8.5000 #100 plg	9.75 0.6000	82.88 1.82
1.09								87.77
0301010006 0301080001 030108000300 7.59	CEPILLA	Equipos IIENTAS MANUALES DORA ELECTRICA		%mo hm SIERRA	0.2000 CIRCULAR	5.0000 0.4000 hm	66.48 14.60 0.1000	3.32 5.84 0.2000
7.00	1.02							10.68
Partida	02.07.01	BISAGRAS C	APUCHINA ALUMINIZ	ADA DE 3 1	I/2 X 3 1/2"			
Rendimiento	und/DIA	MO. 20.0000	EQ. 20.0000		Cost	o unitario direc	to por : und	13.38
Código	Descripc	ión Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010004	CAPATAZ OFICIAL			hh hh	0.1000 1.0000	0.0400 0.4000	26.23 17.51	1.05 7.00 8.05
023706000100 1.0000	03 5.09	Materiales		BISAGR. 5.09	A CAPUCHINA	A ALUMINIZAD	A 3 1/2"x3 1/2"	und
	5.00			0.00				5.09
0301010006	HERRAM	Equipos IIENTAS MANUALES		%mo		3.0000	8.05	0.24 0.24

Presupuesto Subpresupuesto sto **001** ouesto **001** upuesto **01/07/2019**

Fecha presupues	to 01/07/20 1	19						
Partida	02.07.02	CERRADURA	PARA PUERTA INGR	ESO				
Rendimiento	und/DIA	MO. 6.0000	EQ. 6.0000		Cost	o unitario direc	to por : und	149.49
Código	Descripci	ón Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010004	CAPATAZ OFICIAL			hh hh	0.1000 1.0000	0.1333 1.3333	26.23 17.51	3.50 23.35 26.85
023703000100 1.0000	02 122.37	Materiales		CERRAD 122.37	OURA SCHLAG	GE ORBIT SEF	RIE "A" EXTERIC	DR und
0301010006	HERRAM	Equipos IENTAS MANUALES		%mo		1.0000	26.85	0.27 0.27
Partida	02.07.03	CERRADURA	PARA PUERTA INTER	RIORES				
Rendimiento	und/DIA	MO. 8.0000	EQ. 8.0000		Cost	o unitario direc	to por : und	59.13
Código	Descripci	ón Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010004	CAPATAZ OFICIAL			hh hh	0.1000 1.0000	0.1000 1.0000	26.23 17.51	2.62 17.51 20.13
023708000100 1.0000	04 38.40	Materiales		CERRAD 38.40	DURA GEO PL	JERTA INTERI	OR Y DORMITC	
0301010006	HERRAM	Equipos IENTAS MANUALES		%mo		3.0000	20.13	0.60 0.60
Partida	02.08.01	VIDRIO SEMII	OOBLE INCOLORO CR	RUDO				
Rendimiento	m2/DIA	MO. 60.0000	EQ. 60.0000		Cos	to unitario dired	cto por : m2	53.78
Código	Descripci	ón Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003 0101010005	CAPATAZ OPERARI PEON	, -		hh hh hh	0.1000 1.0000 0.2500	0.0133 0.1333 0.0333	26.23 21.86 15.78	0.35 2.91 0.53 3.79
0243120001	VIDRIO T	Materiales RANSPARENTE CRU	JDO MEDIO DOBLE	m2		1.0500	47.50	49.88 49.88
0301010006	HERRAM	Equipos IENTAS MANUALES		%mo		3.0000	3.79	0.11 0.11

EDIFICIO MULTIFAMILIAR DE 4 PISOS Y 1 SÓTANO EN EL DISTRITO DE VILLA EL SALVADOR ESTRUCTURA Y ARQUITECTURA Presupuesto 001 Subpresupuesto 001 Fecha presupuesto 01/07/2019

Fecha presupues	sto 01/07/20	19						
Partida	02.09.01	INODORO OI	NE PIECE BLANCO					
Rendimiento	und/DIA	MO. 5.0000	EQ. 5.0000		Cost	o unitario direc	to por : und	144.79
Código	Descripc	ión Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003	CAPATAZ OPERAR	IO		hh hh	0.1000 1.0000	0.1600 1.6000	26.23 21.86	4.20 34.98 39.18
024603000100	002	Materiales		TUBO D	E ABASTO 5/8	3" und	1.0000	12.72
12.72 024607000100 2.0000	2.51	ON DI ACTICO		PERNOS 5.02	S DE ANCLAJE	E DE FIERRO (GALVANIZADO (CON und
0246140001 024624000100 16.40	ANILLO D	ON PLASTICO DE CERA PARA INOI	DORO	und ASIENTO	O MELAMINE	1.0000 PESADOund	2.40 1.0000	2.40 16.40
024702000100 1.0000	016 69.07			INODOR 69.07	O NACIONAL	ONE PIECE C	OLOR BLANCO	und 105.61
Partida	02.09.02	LAVATORIO	PEDESTAL BLANCO					
Rendimiento	und/DIA	MO. 5.0000	EQ. 5.0000		Cost	o unitario direc	to por : und	204.80
Código	Descripc	ión Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003	CAPATAZ OPERAR	IO		hh hh	0.1000 1.0000	0.1600 1.6000	26.23 21.86	4.20 34.98 39.18
024601000200	02	Materiales		DESAGL	JE AUTOMATI	CO P/LAVATO	ORIO und	1.0000
12.72 024603000100	12.72 101				E ABASTO 1/2		2.0000	12.72
25.44 024604000100				UÑAS D	E SUJECION I	PARA LAVATO	RIO und	1.0000
7.53 024608000100 11.87	7.53 003 11.87			TRAMPA	A P CROMADA	A P/LAVAT. 1 1	/4" und	1.0000
024701000200 29.58				LAVATO	RIO NACIONA	AL MANANTIAI	_ und	1.0000
024717000100 31.95				PEDEST	AL NACIONAI	L MANANTIAL	und	1.0000
025601000100 46.53	003 46.53			MEZCLA	DORA PARA	LAVATORIO (\	/AINSA) und	1.0000
Partida	02.09.03	DUCHA CRO	MADA DE CABEZA GI	RATORIA Y	LLAVE MEZO	CLADORA		165.62
Rendimiento	und/DIA	MO. 8.0000	EQ. 8.0000		Cost	o unitario direc	to por : und	88.17
Código	Descripc	ión Recurso Mano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003	CAPATAZ OPERAR	7		hh hh	0.1000 1.0000	0.1000 1.0000	26.23 21.86	2.62 21.86 24.48
0241030001 025603000100	-	Materiales EFLON			GIRATORIA B	0.2500 RAZO Y CANO	1.32 OPLA 2 LLAVES	0.33 und
1.0000	62.63	Eautin		62.63				62.96
0301010006	HERRAM	Equipos IENTAS MANUALES	S	%mo		3.0000	24.48	0.73 0.73

Presupuesto 001 Subpresupuesto 01/07/2019 EDIFICIO MULTIFAMILIAR DE 4 PISOS Y 1 SÓTANO EN EL DISTRITO DE VILLA EL SALVADOR ESTRUCTURA Y ARQUITECTURA

Partida	02.09.04	TOALLERO DE	LOSA BLANCO					
Rendimiento	und/DIA M	O. 10.0000	EQ. 10.0000		Cost	o unitario directo	por : und	33.79
Código	Descripción	Recurso Iano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003	CAPATAZ OPERARIO	iano de Obra		hh hh	0.1000 1.0000	0.0800 0.8000	26.23 21.86	2.10 17.49 19.59
024615000100 1.0000	01 14.20	Materiales		TOALLE 14.20	RO DE LOSA	BLANCA CON E	BARRA PLASTIC.	A und
Partida	02.09.05	PAPELERA LOS	SA BLANCO					
Rendimiento	und/DIA M	O. 10.0000	EQ. 10.0000		Cost	o unitario directo	por : und	25.39
Código	Descripción	Recurso Iano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003	CAPATAZ OPERARIO	iano de Obra		hh hh	0.1000 1.0000	0.0800 0.8000	26.23 21.86	2.10 17.49 19.59
024611000100 5.80	02	Materiales		PAPELE	RA DE LOZA I	BLANCAund	1.0000	5.80
								5.80
Partida	02.09.06	JABONERA LO	SA BLANCO					
Rendimiento	und/DIA M	O. 10.0000	EQ. 10.0000		Cost	o unitario directo	por: und	23.49
Código	Descripción N	Recurso Iano de Obra		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002 0101010003	CAPATAZ OPERARIO			hh hh	0.1000 1.0000	0.0800 0.8000	26.23 21.86	2.10 17.49 19.59
024622000100 3.90	04 3.90	Materiales		JABONE	RA DE LOZA	BLANCA C/ASA	und	1.0000

3.90

Anexo 10: Verificación de resistencia a corte de albañilería y elementos de confinamiento

1.1. Verificación de resistencia a corte de albañilería y elementos de confinamiento

1. Predimensionamiento

1.1. Espesor Efectivo de Muros "t" (Artículo 19)

El espesor efectivo mínimo, descontando tarrajeos, es $t \ge h/20$

$$t = \frac{250}{20} = 12.5 \approx 13 \ cm$$

Donde "h" es la altura libre entre los elementos de arriostre horizontales. Con lo cual, se utilizará muros en aparejo de soga con espesor efectivo igual a 13 cm (15 cm tarrajeado) en la dirección longitudinal y muros en aparejo de cabeza con espesor efectivo de 24 cm (25 cm tarrajeado) en la dirección transversal de la edificación.

1.2. Densidad Mínima de Muros Reforzados (Artículo 25)

La densidad mínima de muros reforzados para la dirección "X", se determina con la expresión:

$$\frac{\text{\'A}rea~de~Corte~de~los~Muros~Reforzados}{\text{\'A}rea~de~la~Planta~T\'ipica} = \frac{\sum L.t}{Ap} \ge \frac{Z.U.S.N}{56}$$

Donde:

L = longitud total del muro incluyendo sus columnas (sólo intervienen muros con <math>L > 1.2 m)

 $t = espesor efectivo = 0.13 m \le 0.24 m.$

Ap =área de la planta típica = 256.5 m2

Z = 0.45 el edificio está ubicado en la zona sísmica 4 (Norma E.030)

U = 1.0 el edificio es de uso común, destinado a vivienda (Norma E.030)

S = 1.05 el edificio está ubicado sobre suelo intermedio (Norma E.030)

N = 4 = número de pisos del edificio

$$\frac{\sum L.t}{An} \ge \frac{Z.U.S.N}{56} = \frac{0.45 \times 1 \times 1.05 \times 4}{56} = 0.03375$$

Área requerida = $Ap \times 0.03375 = 256.5 \times 0.0354 = 86568.75 \text{ cm}^2$

Para $t = 13 \text{ cm} \rightarrow \text{Logitud de muro reguerido} = 66.6 \text{ m}$

Para $t = 24 \text{ cm} \rightarrow \text{Logitud de muro reguerido} = 36.07 \text{ m}$

Para este predimensionamiento no se considerará el aporte de los muros de la escalera y del ascensor ya que el objetivo de esto es verificar si la albañilería tiene la capacidad de soportar toda la fuerza cortante basal en ambas direcciones.

En la Tabla 1 y 2 se indica la longitud de los muros, su área de corte (Ac = L t), el número de muros de iguales características (Nm) y además se verifica que la densidad de muros que presenta el edificio en la dirección X e Y excede al valor mínimo reglamentario (0.03375).

Tabla 1. Densidad de Muros Reforzados

		Direco	ción X-X		
Eje	Muro	L (m)	t (m)	Ac (m2)	Nm
1	X1	25.3	0.15	3.795	1
10	X2	25.3	0.15	3.795	1
5	X3	5.35	0.25	1.3375	1
		$\sum Ac$	$\times \frac{Nm}{Ap} = \frac{8.927}{256}$	$\frac{75}{.5} = 0.0348$	

Tabla 2. Densidad de Muros Reforzados

		Direc	ción Y-Y		
Eje	Muro	L (m)	t (m)	Ac (m2)	Nm
A	Y1	2.25	0.25	0.5625	1
A	Y2	2.25	0.25	0.5625	1
		$\sum Ac$	$\times \frac{Nm}{Ap} = \frac{1.125}{256.5}$	$\frac{1}{5} = 0.00438$	

De acuerdo a los resultados obtenidos en la tabla 1 y 2, se afirma que en la dirección X, los muros de albañilería confinada si tienen la capacidad de poder soportar toda la fuerza cortante basal de acuerdo a la norma E.030. sin embargo, en la dirección Y, los muros de albañilería confinada no tienen la capacidad para soportar el 100% de la cortante basal (solo soportan el 12.98 %) es por ello que se recomienda colocar placas (en vez de albañilería confinada) en esta dirección y además de considerar el aporte de los muros de concreto armado de la escalera y ascensor.

Anexo 11: Actas de Reuniones y Documentación

Lima, 31 de julio del 2019

Carta de Asesor

Señores DIRECCIÓN DE LA CARRERA DE INGENIERÍA CIVIL UNIVERSIDAD SAN IGNACIO DE LOYOLA

Presente.-

Atención

JOSE ALBERTO ACERO MARTINEZ

Asesor

Asunto

Revisión de Trabajo de Investigación para optar el Grado Académico de

Bachiller en Ingeniería Civil.

De mi consideración:

Me dirijo a usted para dar conformidad de acuerdo a la revisión realizada al Trabajo de Investigación para optar el Grado Académico de Bachiller en Ingeniería Civil titulado "DISEÑO DE UN EDIFICIO MULTIFAMILIAR DE 4 PISOS Y UN SEMISÓTANO EN EL DISTRITO DE VILLA EL SALVADOR" realizada por los alumnos:

- Veto Carbonelli Zanabria
- Lenin Portocarrero Rodríguez
- Jhossep Rossowill Reyes Yenque

Cabe mencionar que la revisión consistió en la evaluación de las memorias de cálculo que se presentan, así como de los planos de estructuras, concluyendo que estos están de acuerdo a las normativas nacionales y a las buenas prácticas en la ingeniería.

Sin otro particular, me despido de usted.

Atentamente,

F-259-2 SOLICITUD DE EVALUACIÓN DE TRABAJO DE INVESTIGACIÓN

Lillia, 02	del 2019	
× Pregrad	o Regular	
Program	na CPEL	
Carrera/Program): JNG. PAULA ROJAS JULIAN ma: <u>INGENIERIA CIVIL</u> n Ignacio de Loyola	
Presente Que habiendo d a.) Dos (2) d b.) Dos (2) d Solicito a Usted siguientes datos	oncluido el desarrollo del Trabajo de Investigación y haciendo e ejemplares impresos con la firma del asesor. rersiones electrónicas del Trabajo de Investigación. proceder con la Evaluación del Trabajo de Investigación, al des	
Título del Trabajo de Investigación: Asesor:	"DISENO DE UN EDIFICIO MULTIFAMILIAR Y UN SEMISOTANO EN EL DISTRITO DE VILLA. ING. JOSE ALBERTO ACERO MARTINEZ	DE 4 PISES 4 EL SALVATOR.
	INTEGRANTES	
Integrante 1:	THE CONTRACTOR OF THE CONTRACT	FIRMA
/~	Midos: VETO CARBONELLI ZANABRIA 941804710 Vetoczrbonelliz@gnail. wm	***
Nombres y Apel Teléfono : Email ;	lidos: LENIN PORTOCARPERO RODRÍGUEZ 952328768 Lenin portocameror @gmail. como	Suppl
	lidos: JHOSSEP fossowill peves renque	ALI
Email :	Jrexes yenque Cymail. com	1973
Integrante 4: Nombres y Apeli		
Teléfono		
Email		
Integrante 5: Nombres y Apell	idos:	
Teléfono		
Email		

Sin otro en particular.

Saludos cordiales.

Actualizado: Julio 2017

Pág. 1 de 1

RÚBRICA DE EVALUACIÓN AL 50% DE AVANCE

Semestre	2019-1		Carbancles Frankeis
Docente Asesor		Integrantes	Pato comero hadicano
Grupo Nro.	PRJ-03	odnub leb	Reyer Yenang
Puntuación (0%)	Retroalimentación al grupo		8

Estructura	Contenido	Cumplimiento según Escala de Evaluación	Observaciones
Carátula	Carátula	MB	
Resumen del Proyecto	500 palabras máximo. Los propósitos del resumen son los siguientes: Ofrecer una indicación clara del objetivo, alcance y resultados claves del proyecto. Proporcionar palabras y frases claves para la indexación la	0	-Prepara Vescuein
	abstracción, y fines de recuperación.		
Descripción del	Describir el problema o la necesidad que el equipo está abordando.		
problema del proyecto	Identificar el propósito u objetivo del proyecto, el contexto del proyecto		
o solución	y el problema técnico en general.		
Especificaciones	Las especificaciones y los requisitos para el proyecto deben ser		
Técnicas	explicados de manera detallada y entendible		
Pruebas realizadas a la			Al revos + Proper
solución propuesta,	Metodología y diseño	Septiment of the septim	arene an chy Luego
modelamiento, etc.			28 3 divides

Lenin Porto cumero .

Fechu: 04/07/19

Página 1 de 2

Lara Se 200 Nate

Rúbrica de Evaluación al 50% de avance

005-CP-CICIVIL

Trabajo de Bachiller

		Cumplimiento	
Estructura	Contenido	según Escala	Observaciones
		de Evaluación	
	Explicación y descomposición funcional del proyecto. Explicar las	E	
Criterios alcanzados	principales funciones requeridas para el debido funcionamiento del	7	
	diseño, y cuáles fueron alcanzadas.		
	Explicación y descomposición funcional del proyecto. Explicar las	ς	
Criterios no	principales funciones requeridas para el debido funcionamiento del	<u>,</u>	
alcanzados. Razones.	diseño, y cuáles no fueron alcanzadas.		
Cumplimiento con las		2	
restricciones y	Análisis de restricciones y limitaciones del incumplimiento de algunos	2	
limitaciones del	objetivos.		
proyecto			

		Escala de	Escala de Evaluación		the same and
Evaluación	Sobresaliente	Muy Bueno	Bueno	Aprobado	Desaprobado
Sigla	vo	MB	В	⋖	D

Firma Docente Asesor		Aprobado	1
Firma Docente Revisor	Man De Man Contraction of the Co	Desaprobado	
	an a wording as talong on astor of Spiriture Telessons		

* Mans -> soldingold botons, Takens, Ing., alignoff & how so digeral planes couplets * Righten de carden of carden of the prince

RÚBRICA DE EVALUACIÓN AL 50% DE AVANCE

61/20/80

Semestre	2019-1		Carbanelli Zanakri
Docente Asesor	LI	ntegrantes	Part awer bodynes
Grupo Nro.	PRI-03	del grupo	Reyes Yengue.
Puntuación (0%)	Retroalimentación al grupo		

Observaciones		-Prepara Visauen Carts pesentaun			Al revés -> privaro Diserce en e.A.y Lereso el simici
Cumplimiento según Escala de Evaluación	MB		4	3	2
Contenido	Carátula	500 palabras máximo. Los propósitos del resumen son los siguientes: Ofrecer una indicación clara del objetivo, alcance y resultados claves del proyecto. Proporcionar palabras y frases claves para la indexación, la abstracción, y fines de recuperación.	Describir el problema o la necesidad que el equipo está abordando. Identificar el propósito u objetivo del proyecto, el contexto del proyecto y el problema técnico en general.	Las especificaciones y los requisitos para el proyecto deben ser explicados de manera detallada y entendible	
Estructura	Carátula	Resumen del Proyecto	Descripción del problema del proyecto o solución	Especificaciones Técnicas	Pruebas realizadas a la solución propuesta, modelamiento, etc.

		Cumplimiento	
Estructura	Contenido	según Escala	Observaciones
		de Evaluación	
Criterios alcanzados	Explicación y descomposición funcional del proyecto. Explicar las principales funciones requeridas para el debido funcionamiento del	κ	
	diseño, y cuáles fueron alcanzadas.	7	
Criterios no	Explicación y descomposición funcional del proyecto. Explicar las		
alcanzados Razones	principales funciones requeridas para el debido funcionamiento del	2	
מוסמו ובממסט. ואמבטווכט.	diseño, y cuáles no fueron alcanzadas.)	
Cumplimiento con las			
restricciones y	Análisis de restricciones y limitaciones del incumplimiento de algunos	2	
limitaciones del	objetivos.	^	
proyecto			

		Escala de l	Escala de Evaluación		
Evaluación	Sobresaliente	Muy Bueno	Bueno	Aprobado	Desaprobado
Sigla	S	MB	В	A	D

Firma Docente Asesor		Aprobado
Firma Docente Revisor	Gramme James	Desaprobado
* Cabrier de luyer fran de hetodole	aly actub	
* Planes -> Solarmoute beloins	the bosin laws, I me, difered & No se requere plans conglets	coupletes

* Reenverberous y caulinius -> Minner

Página 2 de 2

TRABAJO DE GRADO Nº 007 – CP-CICIVIL

Rúbrica Analítica Informe de Trabajo

JRSO: Taller Trabato de NoTBachiller SECCIÓN

Carbonelli - Perto Carreno. Reyel

6190/00

FECHA:

GRUPO:

NOMBRE:

Ítem	CATEGORÍA	4 SOBRESALIENTE	3 NOTABLE	2 APROBADO	1 INSUFICIENTE
-	Calidad de la información	La información claramente desarrolla el tema principal de la tarea. Incluye diversos detalles de apoyo y/o ejemplos.	La información claramente desarrolla el tema principal de la tarea. Incluye 1-2 detalles de apoyo y/o ejemplos.	La información claramente desarrolla el tema principal de la tarea. No se aportan detalles de apoyo o ejemplos.	La información tiene poca o ninguna relación con el tema principal de la tarea.
71	Organización de la información	La información aportada es completa y completa y muestra muestra relaciones claras y lógicas con todos los apartados y subapartados de la tarea.	La información aportada es completa y muestra relaciones claras y lógicas con la mayoría de los apartados y subapartados de la tarea.	La información aportada es parcialmente completa e incluye algunos de los apartados y subapartados de la tarea.	La información aportada no presenta relación con el contenido de los apartados o subapartados de la tarea.
w	Uso de la gramática y de la ortografía, Referencias y Bibliografía.	No existen errores gramaticales, ortográficos o de puntuación.	Casi no existen errores gramaticales, ortográficos o de puntuación.	Unos pocos errores gramaticales, ortográficos o de puntuación.	Muchos errores gramaticales, ortográficos o de puntuación.

3

Formato de Registro de Consejería

ACTA DE REUI	NIÓN
Grupo: 03 - 2019-1 PRJ	Acta No 01
Semestre: DECIMO	Fecha: 15/04/19
Asesor: Rofesor José Acoro	Hora inicio: Fin: 6:30 pr
Revisor: Paula Rojan Julian	Lugar: Campus 2 -USIL

	PARTICIPANTES						
No.	Nombre	Cargo	Firma				
1	VETO CARBONELLI ZANABIRIA	ESTUDIANTE	Al-				
2	LENIN PORTOCAPRERO RODRIGUEZ	ESTU DIANTE	Do the				
3	THOSSEP ROSSOWILL REVES YENGE	ESTUDIAN TE	Dr W				
4			The T				
5							

	PUNTOS DE DISCUSION
1	- Tiemen que tener e videncias de 3 reuniones en las 14 sem.
2	Forma to TRABATO OF GRADO DOY - CPCICIVIL.
3	- Asistir a los Talleres de porter para presistación
4	all Tralajo.
5	- Tres peuniones mas: 1 -> 50% Sem 7
6	2-> 75% Sem 10
	7-7. 0 4.76

Aff

3-> 100%. Sem 14

5.7. Formato de Acta de Reunión

TRABAJO DE GRADO Nº 004 - CP-CICIVIL

ACTA DE REUNIÓN	
Grupo: 03-2019-1 PRI	Acta No : 01
Semestre: 2019 - I	Fecha: 15/03/19
Asesor: SIM. JOSE ALBERTO ACERO MARTINEZ	Hora inicio: Fin:
Revisor: ING. PAULA ROJAS JULIAN	Lugar: CAMPUS1- USIL

PARTICIPANTES			
No.	Nombre	Cargo	Firma
1	VETO CARBONELLI ZANABRIA	ESTUDIANTE	
2	LENIN PORTOCARRERO PODRIBUEZ	ESTODIANTE	Lype
3	JHOSSEP P. PEYES YENGUE	ESTUDIANTE	9
4			1
5			

	PUNTOS DE DISCUSION	
1	Desnipción del problema del proyecto.	
2	Definición de especificaciones técnicas.	
3	Resumen del complimiento de normativa nacional.	
4	Elaboración de planos.	
5	Memorias de cálculo.	
6		

DESARROLLO DE LA REUNIÓN

- 1- Descripción del problema del proyecto:

 Para realizar este punto, el grupo, en conjunto, debe realizar la definición de los objetivos generales y especíticos, incluyendo la descripción del proyecto, la delimitación de la investigación la formulación del problema de la investigación y tinalmente la justificación e importancia. La razon de hecerbo en conjunto es para encaminar correctamente y claramente el proyecto.
- 2- Detrición de las especificaciones técnicas: El participante Veto Carbonelli Zanabria debe detriir las especificaciones técnicas dando e'nfasis a las actividades resacionadas a Estructuras

Las es peciticaciones técnicas deben induir la unidad de metrado, las propisalades de los materiales, la definición de actividades y el proceso constructivo de torma brevey concisa.

3= Resumen del cumplimiento de normativa nacional: £1 alumno Thorsep R. Rexes Yenque debe reconocer las normativas que involucran el proyecto, especíticamente aquellas relacionadas al diseño arquitectónico y estructural. 4: Elaboración de planos:

El alumno Veto Carbonelli realizara el plano de Ubicauting localización. Para ello, debe solicitar los para metros urbanísticos y edificatorios del distrito de Villa El Salvador. Adamas, el alumno debe da soporte al resto en la el alboración de los otros plamos.

Lenin Porto escrero Podrigues se encergera de elaborar los planos de Arquitectura tornando en cuenta lo solicitado en el proyecto. Adonsá debe compatibilizar con los plamos de Estructura. Thossep. P. Poyos Vanque elaborara los plamos

de takucturas relacionados a la chimentación y pisos.

5= Momorias de calulo:

El alumno Lenin Pertocarrera so encergara de hacen la remonuoria de estudios basicos detallendo la zonza de estudio respecto a su sismicidad, ceranterísticas geotécnicas. Ademas, realizara el diseño de la abanibria.

El alumno Thossep, feyes Yonque elaborera las momorias de callulo del disero de losa aligerada y mociza, placas y zapa las.

Elalumno Veto Carbonelli hera la momoria de las columnos y vigas, ademas de la memoria sismila.

Observaciones.

	CONCLUSIONES			
No	Tarea	Responsable	Período de cumplimiento	Observaciones
1	Descripción del problema del proyecto.	Todos los Mtogramtes	1/2 mes	_
2	Detinición de especificaciones técnicas	Veto Czrbonelli	1 ½ mes	
3	Resumen del Cum phimiento de normativa nacional	Thosep R. Peyes You que	1 1/2 mes	-
4	Elaboración de plamos	Veto Orbone 11: Lenin Portocomero Thosep P. Penque	1 1/2 mes	_
5	Memorias de Cálulo	Lonin Partocerror o Thussep R. Yorque Veto Carbonelli	1 1/z mes	-

Nota:

√ Firma Líder del equipo y Asesor en reunión con Asesor

Portocarrero Bodriguez

√ Firma Líder del equipo, cuando solo hay reuniones de equipo

Lider del equipo

Asesor

5.7. Formato de Acta de Reunión

TRABAJO DE GRADO Nº 004 - CP-CICIVIL

ACTA DE REUNIÓN		
Grupo: 03-2019-1-PRJ	Acta No : 2	
Semestre: 2019 - I	Fecha: 20/04/19	
Asesor: ING. JOSE ALBERTO ACERO MARTI REZ	Hora inicio: 5:00pm Fin: 7:00pm.	
Revisor: PAULA PLOSAS JULIAN	Lugar: CAMPUS 2-BADI-USIL	

PARTICIPANTES			
No.	Nombre	Cargo	Firma
1	VETOCAMBONELLI ZAVABRICA	ESTUDIANTE	-
2	LENIN PORTOCALPERO RODRIGUEZ	ESTUDIANTE	Jug 2
3	THOSSEP R. PEVES YENGUE	ESTU DIANTE	1700
4			
5			

PUNTOS DE DISCUSION	
1	Estructuración de la edificación
2	Analisis y modelamiento sísmico
3	Digeño de elementos
4	Diseño de cimentación
5	
6	

11: Estructuración de la edificación: Apartir del plano de Arquitectura, se definen los elementos estructurales con el predimensionamiento respectivo.

2 = Análisis y modelamiento sísmico: Se deben considerar los tactores propuestos en la norma E. 030. Verificar el modelo computacional de accordo con la normativa mencionada. Se recomforda realizar el modelo en 61 software ETABS.

3: Diseño de Blenentos: Utilizar la norma E.060 para el proceso diseño de eleventos de contreto armado; y la E.070 para albanilenía.

4: Disero de amentación: se propone el disero de de zapatas aistadas y cimiento corridos.

Para el cálculo, previamento se determino la capacidad portam te del suelo.

Observaciones.

	CONCLUSIONES				
No	Tarea	Responsable	Período de cumplimiento	Observaciones	
1	Estructuración de la edificación	Todos los Megrantes	_	-	
2	Analisis y un ochelamion to sismico	Todos los Integrantes	_	-	
3	Diserro da eleventos	Todas les integrantes	_		
4	Diseño de comentación	todos los integramtes	_	_	

- ✓ Firma Líder del equipo y Asesor en reunión con Asesor
- ✓ Firma Líder del equipo, cuando solo hay reuniones de equipo

Lider del equipo

5.7. Formato de Acta de Reunión

TRABAJO DE GRADO Nº 004 - CP-CICIVIL

ACTA DE REUNIÓN		
Grupo: 03-2019-1 PRJ	Acta No : 3	
Semestre: 2019 - I	Fecha: 10/06/19	
Asesor: ± NG. JOSE ALBERTO ARERO MARTINEZ	Hora inicio: 700pm Fin: 9,00 pm.	
Revisor: ING. PAULA ROJAS JULIAN	Lugar: CAMPUS 1 - USIL.	

PARTICIPANTES			
No.	Nombre	Cargo	Firma
1	VETO CARBONELLI ZANABILDA	ESTU DIANTE	1
2	LENIN PORTOCARRENO RODRIGUEZ	ESTUDIANTE	Lugar
3	THOSSEP R. REVES YENDLUE	ESTO DIMNITE	(Days)
4			
5			

	PUNTOS DE DISCUSION
1	Levantamion to de observaciones de pevision 1.
2	Plam do metodolosía y memoria de calidades do materiales.
3	aprograma de ejecución
4	Presupuesto y análisis de costos.
5	Plan de control de calidad, segundad en obra y gestion ambiental
6	conclusiones y recomendaciones

1= Leventemiento de observaciones: Se comigizán los phanos de Estructuras y Arquitectura, esí como les menories de calculode los elementos estructurales. Este pucaso lo realizarán todos los integrantes del grupo.

Se realizaran en conjunto para evitar emores.

- 2: Plande metadología y memorizo de calidades de materiales;
 - El plan de metabología la realizarz d alumno Veto Cabarelli. Debe realizarlo como un diagrama de Hujo considerando las actividades necesarias para la elaboración del expediente. Por otra perte, este mismo alumno debe realizarlas memorias de calidades, referenciaridose de las nomativas locales de materiales como E. 060, ASTM.
- 2: Chongrama de ejecución:

 Lo realizará el alumno Veto Cerbonelli en el software

 Ruspect 2016, en don de detinirá los duraciones, fedhas

 de inicio y tin de los actividades, Pealizará también

 el diagrama de Gant 9 la ruta arítica, el WBS y

 flujo de caja.
- 4. Présupuesto y analisis de costos:

 Lo desarrollara el alumno Lenin Portocamero. El debe

 Considerar la Revista "Costos" para establecer los

 analisis de precios unitarios en el software são Presupuestos,

 como hará los metrados y el presupuesto del proyecto

incluyendo les pertides generales de Instalactores Ebédrices 9 Sanitarios y especiales.

5 = Plam de control de calidad, seguridad enobra y gestión ambiental:

El plam de control decalidadará realizado por Lonin

Partocamero. Este debe detallar unas especificaciones

Para la recepción de materiales, equipos y sistemas,

para la recepción de materiales, equipos y sistemas,

control de calidad en la ejecución de la obray en la

control de calidad en la ejecución de la obray en la

control de calidad en la ejecución de la obray en la

estableción.

Por estrolado, Thossep R. Peyes el plan de

seguridad en obra un siderando la 6,050. Ademas,

seguridad en obra un siderando la 6,050. Ademas,

de be realizar las matrices Frenc, EPP y ATS. También

de be realizará el plan de gostión ambiental, estableción do

procesos de la gestión ambiental.

6 = conclusiones y recomendaciones:

Para establecer las conclusiones y recomendaciones,
el grupo, en conjunto, debe realizar los canel fin
de marporar todos los conocimiento adequinales
del prograto.

Observaciones.

	CONCLUSIONES				
No	Tarea	Responsable	Período de cumplimiento	Observaciones	
1	Levantemiento de observaciones de la revisibó on	todos los integramtes	4 dras	_	
2	Plande metoddogía y mevnoria de alidato de matería les	Veto Cosborelli	20 días	_	
3	Cronograma de Ejecución	Veto Cerbonelli	20 días	_	
4	Phesupuesto y zinstris de costos	Lenin Portocenero	20 días	_	
3	Plan de control de Calidad, seguridad Endora y sestan Endora y sestan	Lenin Portocenero Ilussep P. Yenque	20 días	_	
C	conclusiones y reconenclaables.	Tados los integrantes	20 clías	_	

- √ Firma Líder del equipo y Asesor en reunión con Asesor
- √ Firma Líder del equipo, cuando solo hay reuniones de equipo

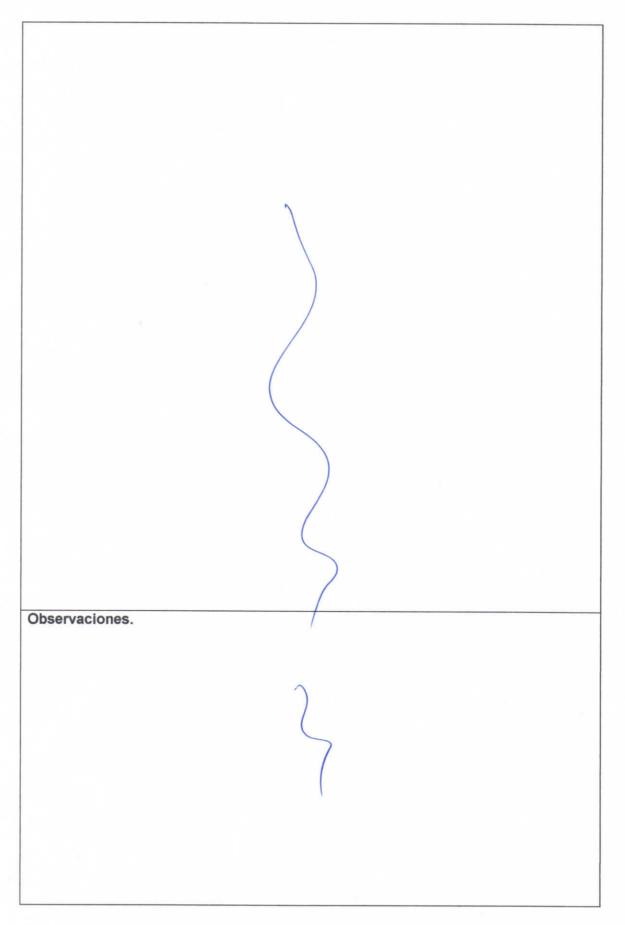
Rodriguez

Lider del equipo

5.7. Formato de Acta de Reunión

TRABAJO DE GRADO Nº 004 - CP-CICIVIL

ACTA DE REUNIÓN	
Grupo: 03-2019-1PEI	Acta No 1 4
Semestre: 2019 - I	Fecha: 101 07 119
ASSOR: ING. TOSE ALGERTO ACETTO MARTINEZ	Hora inicio: 10:00 Fin: 1:00
Revisor: ING. PAULA ROTAS JULIAN	Lugar: CAMPUST-USIL


PARTICIPANTES			
No.	Nombre	Cargo	Firma
1	VETO CARBONEUI ZANABALA	ESTUDIANTE	A
2	LENIN PORTOCARRERO PODRIGGEZ	ESTODIANTE	Louis
3	THOSSEP R. PEYES YENQUE	ESTUDIANTE	Angl
4			1999
5			

	PUNTOS DE DISCUSION		
1	Levantamiento de observaciones de la revisión de		
2			
3			
4			
5			
6			

1: Leventemiento de observaciones de la revisionos: Se revisera en conjunto los errores ettográticos observados, también se mejor aránlos formatos de presenta citares. Finalmente, se dará un mejor enforque al proyecto de investigación.

	CONCLUSIONES				
No	Tarea	Responsable	Período de cumplimiento	Observaciones	
1	Levantamiento de observaciones dela revisión os	todos cos integrantes	15 d/25		
*	Ob.				
E.					

- √ Firma Líder del equipo y Asesor en reunión con Asesor
- √ Firma Líder del equipo, cuando solo hay reuniones de equipo

Lider del equipo

Lenin Portocarrero Rodríguez

5.7. Formato de Acta de Reunión

TRABAJO DE GRADO Nº 004 - CP-CICIVIL

ACTA DE REUNIÓN	
Grupo: 03-2019-1 PRJ	Acta No: 5
Semestre: 2019- I	Fecha: 29-07-2019
Asesor: Jose Alberto Acero Martinez	Hora inicio: 14:00 Fin: 17:00
Revisor: ING. PQULA PLOJAS JULIAN	Lugar: San Miguel - Lima

PARTICIPANTES			
No.	Nombre	Cargo	Firma
1	Veto Carbonelli Zanabria	Estudiante	A
2	Lenin Portocarrero Rodriguez	Estudiante	sauget !
^	Ihossep Reyes Yenque	Estudiante	The state of the s
4	-		
5			

	PUNTOS DE DISCUSION		
1	Revision tinal de planos de estructuras y arquitectura.		
2	Pevisión tinal de memorias de cálculo de elementos,		
3	Evaluación de presupuesto tinal calculado y el cronograma.		
4			
5			
6			

Punto 1: Para la elaboración de los planos de Estructuras y
Arquitectura se tomaron en unsideración la
distribución de ambientes propuesto por el
cliente. El clisaro de la estructura plasmado
en los plamos fueron elaborados bansándose
en la memoria decálulo realizado que
cumple un el Reglamento Nacional do Editicaciones

Puntoz:

Las memorias de cáluito fueron hechas tasandosporminuipalmente en la norma E.030, E.020, E.050, y E.060, cum pliendo con todas estas.

Puntos:

El ratio del presupuesto tinal se aproxima al ratio de costo por área construida en el mercado de la construcción de Lima.

Observaciones.

CONCLUSIONES				
No	Tarea	Responsable	Período de cumplimiento	Observaciones
1	Revision de plenos de Arquitectura y Estructuras	ING. JOSE ACERO MARTINEZ	<u> </u>	_
2	Penisión de momorias de calculo	ING. JOBE AGERO MARTINEZ	_	_
3	Evaluation de prosupuesto final Calculação y cronograma	ING. JOSE MERO MARTINEZ	_	

Lenin

- √ Firma Líder del equipo y Asesor en reunión con Asesor
- √ Firma Líder del equipo, cuando solo hay reuniones de equipo

Lider del equipo